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SEVERAL WAYS OF BREAKING THE COLOUR SYMMETRY
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We discuss some cases of colour-symmetry breaking and its implications for quark
binding by one-gluon-exchange forces. We pay special attention to the case, where colour-
-isospin and colour-hypercharge subsymmetries are preserved. Then, the w-@-like mixing
of colour-nonet components 0 and 8 leads to a Zweig-type approximate selection rule for
decays of ®-like meson = gpgg (gp is the “‘blue” quark) into ordinary mesons (and photons).

1. Introduction

If one seriously tries to imagine that the recently discovered narrow resonances
v (3105) [1, 2] and y(3695) [3] are somehow related to quark-antiquark vector bound
states transforming under colour SU(3) as components 3 and 8 of an octet {4], one meets
immediately the problem of colour symmetry breaking. This breaking should (i) allow
for the existence of coloured mesons, at least the colour-octet components 3 and 8, (if)
split the pair of 3 and 8, and finally (iii) not spoil too much the colour selection rules for
strong decays of 3 and 8 into non-colour hadrons.

Colour symmetry breaking with preserving colour-isospin subsymmetry was recently
discussed by Capps [5] on the ground of baryon spectroscopy. He showed that such
a broken colour symmetry can explain the experimentally observed exclusive correspon-
dence of thé SU(6) baryon multiplets 56 and 70 to even and odd parities, respectively {6].
He got a picture of the baryon as a bound state of a quark g and a diquark gqg (or rather
a cluster ggq).

In the present paper we discuss several cases of colour-symmetry breaking and its
implications for one-gluon-exchange forces and quark binding.

We pay special attention to the case where, as in Capps paper, the colour-isospin
and colour-hypercharge subsymmetries are preserved. Under this assumption we discuss
the possibility of the w-&-like mixing of the colour-nonet components 0 and 8. Then
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strong (and electromagnetic) decays of ®-like meson = gpgy (gp is the “blue” quark)
into ordinary mesons (and photons) are damped by an approximate selection rule of the
Zweig type.

2. Omne-gluon-exchange potential

Let us consider the three-triplet quarks ¢, (4 = 1, 2,3 or R, Y, B is an SU'(3)-triplet
index, SU'(3) = colour SU(3)) and assume that they interact strongly with an SU’'(3)
nonet of vector gluons X, (r=0, 1, ..., 8), where Xo is an SU(3) singletand X, (r = 1,...,8)
form an SU’(3) octet. We will take into account the general case, where the SU’(3) sym-
metry is arbitrarily broken and ¢-X coupling has the form

8
Zj 3 qnAigXt. ()

Here A, (r = 0, 1, ..., 8) are Gell-Mann matrices acting on SU’(3) indices of g (TriA;=
=25, Ay = 1’\@). In coupling (1), the charge-conjugation invariance requires that

g1 = &2, 8B4 =85, 8¢ = &7 2

Notice that the gluon X, is here coupled to the quark number (if go + 0).
In consequence of (1) the one-gluon-exchange static potential for a system of n quarks
and antiquarks is given by the formula

8
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where

=0, )

the matrices A/; being equal to 4, or A/ when acting on SU’(3) indices of i-th quark or
antiquark, respectively (457 = —4g).
If we assume that the spatial average of v,;; does not practically depend on particle
indices i, J,
Er = <Urij> \7 03 (5)

then we obtain after simple calculations for V(n) = {V(n)>:

8
n 200+3(0, + T+ 03+ 04+ Ts5)+ 0
V(n) = 3| 5 ( )+ BF2— 0+3(U, + 0, + 03+ 04 +75) snk
6

12
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250 -+ 3(1_11 +52 + 173 3+ 56 +57) + 68 21_50 -+ 3(544"55 +56 +l77)+4l—78
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Here F.(r = 1, ..., 8) are the generators of SU’(3) and g, ny, #y denote the numbers
of coloured quarks and antiquarks which, in general, are not diagonal simultaneously
with total numbers of quarks and antiquarks, #, and #;, as well as with their sum #, in

spite of the relation

n = ng+ng = ng+ny+ng. )
In the average potential (6), the charge-conjugation invariance requires that
El =52, 54355, 55:—'1.77. (8)

Masses of hadrons are approximately given by eigenvalues of the average hamil-

tonian

H(n) = mgng +myny+myng+V(n), 9

where myg, my, my are masses of coloured quarks.

3. Case Of Uy =0y = ... = Dg
In the special case of exact SU'(3) symmetry, i. e. when
Uy =0y = ... =Ts, (10)
the average potential (6) takes the form (cf. [7, 8])
n, vo+ 80
V(n) = [ ( - (n— 19" +5,C— 9T n], (1)
where
8
c=Y F? (12)

is the quadratic Casimir operator of SU’(3).

In this case, we get from (9) and (11) for non-coloured mesons and baryons (i. e.
for SU'(3)-singlet states of gq and ggq) the following masses

7o+ 80 — Do +40
My, = 2m,— 0 3 g, mpg, = 3m,— __1_/07_1_'_8 , (13)
where we assumed
mg = my = mp = m,. (14)
From (13) we obtain
2m3°—3mM0 = ‘g— 50. (15)

Since experimentally 2mp —3 my,, ~ 0, we have

Do >~ 0.

(16)
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TABLE I
Average masses of simplest quark systems in the case of exact SU'(3) symmetry (and v, = 0)
. — i
System SU'3) C H(n) i Interpretation
repr. '
q 3 4 my quark
qq 1 1] 2mg—%vg = my non-coloured mesons
8 3 2mg+ L s unbound (no coloured
mesons)
qq 3 $ 2mg—2vs = mg+ Fmy, | diquark with mass > m,
6 w0 2mg+ L vg unbound
q9q9 1 ] 3mg—20s = mp, = imMo non-coloured baryons
8 3 3mg— Lvs = 3 my+ Lmg, | coloured baryons with
mass > 2my
10 6 3mg+va unbound
qq9 3 4 3my— %05 = mg+my, | quark + meson
9999 0 dmg— 805 = 2my, two mesons (no exotic
mesons)
4999 3 4 4my—2vs = my+mp, | quark + baryon
9994 3 4 dmg—205 = mg+mp, antiquark -+ baryon
99999 1 0 Smg— 13° Vs = mpy+mpy, | baryon + meson (no exotic
! baryons)

Masses of simplest quark systems, as they follow from (9) and (11), are given in Table I,
where we assumed (14) (and b, = 0). The table shows that in the case of exact SU'(3)
symmetry (and §, = 0) there are no coloured mesons (i. e. no SU’(3)-octet states of gq).
Also the phenomenon of saturation of interquark forces in SU’(3)-singlet states of gg
and gqq is visible from the Tabie.

4. Caseofﬁl=52=54=55=U6=57=0,(-)3:58

It is worthwhile to notice that this phenomenon of saturation of interquark forces
persists in another special case, where the SU‘(3) symmetry is terribly broken in such
a way that only couplings to gluons X,; and X, are relevant and have equal strength.
Then ‘

51={72=§4‘=55=56=57=0’53=58' (1?)
In this case the average potential (6) has the form (cf. [9, 10])
- n;)? vo+20

V(n)=&[ ("6 +0s 41217~ = —n |, (18)

where the “complex charge”
Z = [3(—F4+iF3) 19
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TABLE 1I
Average masses of simplest quark systems in the case of (17) (and v, = 0)
System 1z H(n) Interpretation
94 1 my quark
9498 (A = B) 0 2mg— Lvg = my, “Z-neutral” mesons
quqp (4 # B) 3 2mg+ L0s unbound (no “Z-charged”
mesons)

qdaqs (A # B) 1 2my—~ Lvg = my+ L muy, | diquark with mass > m,

qaq8 (4 = B) 4 2mg+ Lvg unbound

q49B4c - . »
(A, B, C — different) 0 3mg— 1 0s = mp, = 3mp,| “Z-neutral” baryons

q4qsdc 3 unbound (no “Z-charged”
(A4, B, C — two equal) 3 mq baryons)

q49849c 3 unbound (no “Z-charged”
(A, B, C —equal) 9 Mg+ vs baryons)
(4 #ngiqg) 1 3mg— Lvs = my+my, | quark + meson

44989c9D 2= two mesons (no exotic
(A=B,C=0D) 0 4mq— 505 = 2mu, mesons)

q4989¢c4D _
(4, B, C D—thre different) ! 4mg— 3 s = mq+-mp, | quark + baryon

Bdcq - .

(A ;&q},;q C :DD) i 4mg— L vg = my+mp, | antiquark + baryon

94989cqDIF 0 S 55 = baryon + meson (no
(4, B, C — different, D=F) Mg= § Vs = Mpg+my exotic baryons)

describes the diagonal set of SU’(3) generators and, therefore, may be called the “colour”.
Its eigenvalues in one-quark states are cubic roots of unity,

-1+i/3 _—1-iy3

Zy = ,
® 2 Y 2

Zy =1 (20)

and satisfy the “neutralization conditions’ in ggqg, 4vqy> 959 and grgyqs states. It implies
the phenomenon of saturation of interquark forces in *“Z-neutral” states [9, 10].
Masses of simplest quark systems following from (9) and (18) are listed in Table II,

- 1 -

where we assumed (14) (and v, = 0). Now, the “Z-neutral” coloured mesons = ﬁq}.’aq
1 _ 1 .

and = -:/3 qAgqg exist and are degenerate with the non-coloured mesons = —\75 qryq

I _ |
= 7§ gqq. However, the “Z-charged” coloured mesons = T/—i— ghq(r=1,2,4,56"7

do not appear.
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5. Case of51=52=53,v4=55=56=57

Now, we turn to the discussion of the third special case, where SU’(3) symmetry is
broken in such a way that the SU’(2) x U’(1) subsymmetry generated by I = (F{,F;,F;)

2
and YV’ = Vi F, persists as an exact symmetry. Then
\/
ﬁl = 17 6 l-j 55 = 57- (21)

In this case the average potential (6) can be written as follows:

V(n) = ‘};[ (ny ) 5 il + (=)= (51— Tg) 2 Y'*+5,C
_ 200+9v31-; 60~ + Ug o 3v3—24v7—08 "B] - 22)
The average hamiltonian (9) has the form
H(n) = mn+Admng+V(n), (23)
where we assumed
mg = my = m,, myg=m+A4m, (24)

In (22) and (23) the operators n, n,—n;, 1’2, I, Y’ and either C or ng always can be
taken as simultaneously diagonal. Thus the hamiltonian (23) can be treated in two different
perturbation schemes, where either

. 30;—0,—0
H,n) = (Am,,+ —-—3——21—8) ng = &,np (25)

is considered as a perturbation and
Hy(n) = 35,C = ¢,C (26)

included into the unperturbed hamiltonian or vice versa. The former or latter of these
schemes is applicable in the case, where either &, or &, can be considered as a small quan-
tity.

5.1. Case of diagonal C and small g

In the first perturbation scheme, the unperturbed gq states are (here C is diagonal!):

MO = \/_ g = \/_ (9rqr +49v4qy + 9848);
MP = ﬁ = \-/—E(ZIRQR'“‘—IYQY)’

1 _ _
MY = 75 qlsq = %(qRQR'*'QYqY_ZquB) @n



713

and correspond to the unperturbed masses:

g + 95, + 65 + By
mig) = 2m, — B )
20— 35 + b
my) = 2m,~ —— 2|

12

200+ 903 — 120, + T
mig) = 2m,— Yot 70— 1291+ . (28)
12
The binding conditions for M and M{® are
250—353+58 > 0, 250+953— 12§7+58 >0 (29)

(M is bound automatically).
Since due to (27) we have

. . 3
(npdoo =5, 3z =0, (ngrgg =%, (("B)os = - \*/3“) s (30)

we obtain in the first-order perturbation calculation (with respect to the term (25)):

204+ 605+ 80, +20
° o 3 7 8
My, = mﬁ,g-i-%si = 2(m,+% 4my)~ D ,
20, —303+0
My, = myg) = 2m,— —— 210 = D s 5,

12
250 + 353 - 857 + 365

My, = My +5 e = 2Amg+3§ dm)— D =mo+3e+36. (1)
The binding conditions for M; and M, are

(M, is bound automatically).
Notice that if in particular v; = ¢, then

Dy—D
_ 3 - 9 3 8
My, = My, +3 vs—g(Am,,-}- 3 ),

Dy~—0
Magy = Mgy +3 53+§(Am,,+ : - 8) (33)
and the binding conditions (32) reduce to

2o~ 30y +0g > 0, 2Bp—5b;+3b > 0, (34)

where the first condition implies already the second if v3 < vg or vice versa if v; = vg.
Clearly, this is the case of SU’(3) symmetry broken only by #z and 4m,.
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Notice further that if we have vy = v, = 7s then
My, = My, +3 Dg—§ dmy,
My, = My, +3 g+ 5§ Am, (35
and the binding conditions for M; and Mg reduce to
Vo > Vs. (36)

Obviously, it is the case of exact SU’(3) symmetry broken only by the quark mass differ-
ence Am,.

The last case, however, is excluded by the binding conditions (32) which if v, ~ 0
are consistent only with a badly broken SU’(3) symmetry. In fact, making use of (22)
and (23) we get for noncoloured baryons (i.e. for SU’(3)-singlet states of ggg) the mass

—21-70 + 353 +4ﬁ7 +68

mg, = 3(m,+% 4m,)— 2

(37
This result is exact, i.e. independent of the perturbation scheme. From (31) and (37) we
obtain the relation
2mg,—3my, = 3 B, (38)
Assuming as an experimental result that 2mg —3m,, =~ 0 we obtain from (38) and (32):
Up =0, 303 <. 39)
Our perturbation assumption

35, — 20, —Tg

Amg+ 3 =g ~0 (40)
is satisfied if
_—363—1-8267—4-6? = Am,~¢; ~ Am,, 41)
Hence, by (39) we get
Y, =409, <dmy,, Am,> 0. 42)

We conclude that in the case characterized by (21) and (40) the SU’(3) symmetry
must be in fact badly broken (as seen from (39)) in order to provide the binding of gq in
the states M3 and Ms.

5.2. Case of diagonal ng; and small ¢,

In the second perturbation scheme, the unperturbed gq states are (here ng is dia-
gonall):

1 -
MY = 75(‘1&‘1&"’4\*‘1\!%
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M(so) = "I_—(EiRQR“‘}YQY)’
Np

MY = guqp (43)

and correspond to the unperturbed masses:

200+ 93+ 60,+ 0
mg(l)‘)‘, = zmq_ 0 312 7 8 - mggo),
. 200 —303+ 180, +0
mgl)g = 2m,— % 0312 AR mﬁ(}z—%z,
20+ 120, + 40
mQ = 2Am,+A4m)~ —°——E7———8 = mQ) +2¢, —3e,. (44)
The binding condition for M{” is

(M and M©® are bound automatically).
Since due to (27) and (43) we have

V2ZMP+MP o _ M -2 My

A

MY =

(46)
and consequently

(Cun=1 (C)33=3, (Clso=2, (Clus= —+/2), 47

we obtain in the first order perturbation calculation (with respect to the term (26)):

0)

2004903+ 7
me = mMm+82 = 2mq— ____0____3_8 ’

12
, 200 —30; 47
"'lM: = m}g: +382 = 2mq— ~O_-T23~_—8 = mf‘gl+53+82’
200+ 40
My, = M) +2e, = 2(m,+4m)— "1—25 = m{D +2e, +2¢,. (48)
The binding condition for M, is
200—3v3+vg > 0 49)

(M, and M, are bound automatically).

Notice that masses (48) happen to be independent of v, (as far as ¢, = 4 v, is small).
It means that, for the term in (22) proportional to v,, the diagonal matrix elements between
states (43) are zero.
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From (37) and (48) we obtain the following relation between masses of non-coloured
baryons B, and the non-coloured combination

_2M, +My 1

M, ~ NG qrdr + + 50
0 \/3 3 (9rar quY quB) (50)
of mesons M, and M :
2mp,—3my, =~ 3 Bo—4dey =~ 3 By, (51)
where
2my, +m
mMo Mm3 ﬂ’ = n1M0+%82‘ (52)

Assuming as an experimental result that 2mp —3my, ~ 0, we have from (51) and (49)
l—)o ja-q 0, 31_)3 < ﬁg. (53)
Besides, our perturbation assumption
10, =6, ~0 (54)
must be satisfied.
We conclude that in the case characterized by the relations (21) and (54) the SU'(3)
symmetry must be badly broken (as seen from (53) and (54)) in order to provide the binding
of gq in the states M, and

M,—J2M 1 - -
Mg >~ —\}/3—“‘9 ~ % (9r9e +9vqy —2q5qp)- (55)

The latter mix in fact with M, to form the more stable states M, and M, (fe, =39,
is small).

We would like to point out that “blue” quarks gz and antiquarks gp do not appear
in the mesons

M, x V2ot My L b, My =G 66
0= T drdr+4vdy 3 = —= (qrdr— qvdy
N 7
whereas “red” and “‘yellow” ones are absent in the meson
-J2Mg  _
My ~ ”_—j/g——s = -4pqs- (57

Thus, an approximate selection rule of the Zweig type [11] should work toward damping
strong (and electromagnetic) decays of M, into an arbitrary number of M, and M,
(and photons). There is no obvious reason, however, why such a selection rule should work
in decays of M into channels with at least one baryon-antibaryon pair (containing gp
and gp). (See Appendix.)

On the other hand, strong decays of M, into an arbitrary number of M, and M,
and non-coloured baryons B, are strictly forbidden by SU’(2) symmetry generated by T
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5.3. General case

The average hamiltonian H(x) given by (22) and (23) can be also exactly diagonalized
by means of standard methods. For a gq system, its exact eigenvalues are

0 2 9 2
m; = miQ)+e +3 82—\/81+z e5+8.6; ,

i

m, = miyg)+e,+3 G +Ver+3 e2+ee,,
msy = m‘(b({);a (58)
where ¢, is given by (25), &, by (26), and m{J) and m{}, by (28). (See Appendix.)
The state |3) is obviously the meson M; (cf. (31)), whereas the states |1> and |2) are

the mesons M, and M, if 0 <eg,/e; <1 or the mesons M, and M, if 0 <Te,fe; < 1.
Indeed, in the first case (cf. (31))
my = mg}g“"%—sl = mM05
my, = mid+%e,+3e, = my, (59)
or in the second case (cf. (48))

my = m e, =y,
m, =~ mf‘23+281+282 = My, (60)
In the case of 0 <{¢g,/e; <1 we can write

11) = Mo Cos 91 +M8 sin 01,

2> = — M, sin 0, + Mg cos 0;. (61)
Hence
m; = my, cos® 0, +my, sin® 0,
m, = my, sin? 0, +my,, cos’ 0,, 62)
where
sin® 0, = ————~mmrgz_m2{sm—1 (63)
My, — My,
and (by 58))
My, + My, = My+my = mig)+2e, + 3e,. (64)

Since the first-order perturbation values (31) of m,,, and m,,, satisfy already (64) we can
put in general
mMo = mg}g-{-%— SIT‘AI,
My, = mig)+% e, +3e,+4;, (65)

where A; depends on g; in such a way that 4,/e; - 0 when ¢, — 0. The higher-order
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correction 4, can be calculated from H(r) by the perturbation method. Using (63) and (65)
we obtain
3 Y:af+% &2 +e,8,

in? 0, = }— . 66
S0 = i s raa, (66)

Obviously, for ¢, = 0 we have sin 6; = 0 and hence [1) = M{’ and [2) = M.
Similarly, in the case of 0 < &,/e; € 1 we can put

[1> = M, cos 0,+ Mg sin 0,,

i2) = —M, sin 8,4+ Mg cos 0, 67
and
My, = My +&,—4,,
My, = Mg +2e;+26,+ 45, (68)

where 4, depends on €, in such a way that 4,/e, - 0 when ¢, — 0. We obtain here

2 2
\/81 +362+8:8,

in” 0, = 3— 69
S 2 % % 81+%82+42 ( )

Clearly, for e, = 0 we have sin §, = 0 and hence [1) = MY and [2) = M?.

6. Case of vy = v,, U4 = Vs, Vg = Uq

In the general case of the relation (8) which is induced only by the charge-conjugation
invariance, the SU’(3) symmetry is so badly broken that no SU’(2) subsymmetry survives.
If this is the case, the most extended set of operators appearing in the average hamiltonian
which always can be taken as simultaneously diagonal consists of n, n,—n;, I3, Y’ and ng,
ny, ny. If in addition the remainder of H(n) can be considered as a small perturbation,
this set approximately diagonalizes H(n).

In this perturbation scheme, the unperturbed gqq states are (here Mg, Hy, Ny are diagonal!):

M{{ﬁ) = Equa
Mg)) = anYa
MY = gpgs. (70)

They are ‘“‘red”, “yellow” and “‘blue” analogues of & meson. So, three aproximate
selection rules of the Zweig type should work here toward slowing down strong (and
electromagnetic) decays of any of these mesons into other mesons (and photons).

The author is much idebted to Professor Werner Riithl and to Fachbereich Physik
der Universitit Kaiserslautern for their hospitality in Kaiserslautern, and also to Deutsche
Forschungsgemeinschaft for its financial support.
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APPENDIX

The exact formulae (58) for masses of a gq system in the case of (21) can be obtained
by writing
1> = M cos 9, + MY sin 9,
2) = =M sin 9, + M cos 9, (A1)
or
11> = M2 cos 3, + M sin 9,,
2y = =M©sin 9, + ML cos 3, (A2)
and solving the eigenvalue equation
H(g, 9ls> =m, (s=12) (A3)

in the basis {MY, M} or (MY, M}
Then, we get the eigenvalues m (s = 1, 2) given by (58) (of course, independently
of the basis) and the formulae for the expansion coefficients:

2

) 81
sin® 3, = —————— (A4)
4% (Lo +3e Vel +3ei4ee,)
or
82
sin? 9, = S (A%)

e+ (e Hie,+Vel+3e5+e8)’

where sgn(sin §, cos 3;) = + and sgn(sinJ,cos3,) = +. If 0<egfe; €1 or
0 < g,/e; <1 we have from (A4) or (AS5), respectively:

2 er)’ .2 AN
sin 313%(— , sin?8, ~1{—=]. (A6)
€2 1
Thus, for £, = 0 or ¢, = 0 we get from (A1) or (A2), respectively:
2 MP + M
N
; M® - /2 MY
2> = MO, 2= Mg = O TNETE (A7)
V3
Notice the following relations between the exact masses (m,, m,) and the first-order
perturbation masses (Mg, My, OF My, Mpr,):

=M, |1 =MD =

my = my,, cos® 8 +my, sin® §, — &, cos 9, sin 9,

= my, c0s® 9, +my, sin® 3, ~./8 ¢, cos 3, sin 9,
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2 2q . 28 .
my = My, sin® §; 4+ my,, cos” 3+ 3~ g, cos 3, sin 3,

= my, sin® 9, +my, cos’> 9,+./8 &, cos 9, sin 3,. (A8)
These relations differ, of course, from (62) and similar relations for m,,  and m,,,, where
masses (65) and (68) appear including higher-order corrections.

An attractive conjecture may be made that meson families M, M, and M, really
exist as physical particles, where M, are identical with ordinary mesons, whereas M,
and M, represent new mesons. The recently discovered y(3105) and y (3695) might be
related to vector mesons of the types M3 and M. Their decay would be then damped by
strict SU’(2) invariance in the first case and the Zweig “blue” selection rule in the second.
According to our analysis, such a possibility could be realized in the case, where
35, — 20, — U

4 >
(and vy = v, = v3, V4 = U5 = vg = v,). The conditions (A9) mean that the SU’(3) symmetry
is badly broken, especially when v, is small in comparison with v, and/or vg. The last
is certainly true if m, (i.e. the “true” quark mass) is considerably bigger than m,, and my,.

Other members of the meson SU'(3)-nonet (not accessible in the e-e* channel, except

in pairs), M,4;,, Myy;s and Mgy, are like M, exact eigenstates of H (g, q). They
correspond to masses

B, < 24m,+ 3, < 205+ g (A9)

Do— Uy

Mytip = M3, Myyis = Mgy = 2(my+3 Amy)—

(A10)

So, M,.;s and Mg, are not bound (if v, is small).

If the colour-symmetry breaking is caused only by the quark-mass difference Am,
(ie. if v; = v, = ... = vg, dm, # 0), then the first condition (A9) still can be satisfied
though the second cannot (if v, is small). In this case, only the states M, and M, of the
meson SU’(3)-nonet can be bound. Then, M_ might represent new mesons.

Obviously, all results concerning quark binding presented in this paper are valid
only if the theoretical laboratory used here is relevant.
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