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NEW PARTICLES AND BREAKING THE COLOUR SYMMETRY*
By W. KROLIKOWSKI**

Department of Physics, Kaiserslautern University***
( Received May 20, 1975)

In the framework of one-gluon-exchange static forces mediated by a colour octet or
nonet of vector gluons, we discuss quark binding in coloured-meson states and its connec-
tion with breaking the colour symmetry. A possible identification of y (3.1), w:(3.7) and the
broad bump at 4.1 GeV with some coloured bound states of quarks and antiquarks is pointed
out. This identification implies the existence of a second bump in the region of 5 GeV. The
general conclusion of the paper is that the colour interpretation of the new particles may
be true only if the colour symmetry is badly broken (provided the considered forces are rel-
evant).

1. The recent discoveries of narrow resonances w{(3105) [1, 2] and (3695) [3] as well
as the broad bump in e-e* total cross-section around 4.15 GeV [4] challenged theoretical
physicists to search for an adequate explanation of the new phenomena. Among other
possible explanations, the colour interpretation of the new particles was already discussed
by many people (e.g. in SLAC and CERN informal papers). If these particles are really
colour states, then there are a priori two possibilities, namely that they are either elementary
(coloured) vector gluons or composite (coloured) vector states of quarks and antiquarks.

2. In a recent paper [5] we discussed the problem of quark binding in coloured states,
using as a theoretical laboratory one-gluon-exchange static forces mediated by a colour
nonet of vector gluons. If first we restrict ourselves to a colour octet of these gluons,
X, (r=1,..,8), their Han-Nambu coupling to the colour triplet of quarks, q,(4 =
=1,2,3 or R, Y, B), is of the form

8 5 —
Y &z andaXr, M
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where 1. denote Gell-Mann A-matrices acting on SU’(3) indices of g (SU'(3) = colour
SU(3)). The charge-conjugation invariance requires that
81 =82 8+=28s 8= &1 3]

One of the conclusions in Ref. [5] was that, if the one-gluon-exchange static forces following
from coupling (1) bind the coloured states

1_, 1 _ 1 _, 1 _ _ _
M, = 35 qizq = ﬁ(qkqn—quy), Mg = :/5 qlsq = 75— (gr9r +9vqy—2989s),

(3
the colour symmetry expressed by the relations
81 =8 = ... = g3 4
must be badly broken. On the other hand, the non-coloured state
1, | R _ -
M, = 7 ql'q = 7 (grdr +qvqy +qpds) )]

is certainly bound by (1) in the case of colour symmetry.
One-gluon-exchange static potential for a system of # quarks and antiquarks follow-
ing from (1) is given by formula
8

V(n) = z Upijheitrs (6)
iFj r=1
where
2 —mrij
g €
Uy = 6_ >
J 41r rij (7)

the matrices 4); being equal to A, or their charge conjugates 4,° when acting on SU’ (3)
indices of i-th quark or antiquark, respectively.

Assuming that the spatial average of v,;; (for n > 2) does not effectively depend on
particle indices i, j,

U, = <Urij> =0, ®)
and making use of (2) which gives the equalities
Uy =0y D4=705, Vg =10y )]

we obtain the following formula for V(n) = (V(n)):

V(n) =1 [(52 - ﬁ'/)-i'z — (B, — D)~ (B, —Dg) § Y'?+5,C

652+363+657+58 + 252“‘1—)3‘“255"’{78
- n

> 2 ng+(0s—57) (V2= V32— "a)], (10)
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where in terms of the SU’ (3) generators F, (r = 1, ..., 8) we have
14 ’ 7 § 1
(F45 5!%F3+%F8)a

8
Y F72, (11)
r=1

- 2 -
I/ = P-I’ FI’ F: , Y/ = FI, V,
( 1 2 3) \/3 8

C

while g, ny, ny denote the numbers of quarks and antiquarks of colours R, Y, B, which
in general are not diagonal simulteneously with the total number of quarks and antiquarks
n, in spite of the relation

n = ng+ny+ng. (12)

Average masses and states of hadron SU (3) families with given SU’ (3) characteristics
can be approximately calculated as eigenvalues and eigenstates of the spatial-average
Hamiltonian

H(n) = nmg+ngdm,+ngdm,+ V(n), (13)

where

m, =my, Am,z=mg—ny, Om;= my—my. (14)

Using (10) and (13) we can write

H(n) = Ho(n)+4H(n)+SH(n), (15)
where
AH(n) = ¢,ng or &C (16)
and
SH(n) = 5;—1’7 7 <5mq—- vf’;”") . (17)
Here

252 +53 _2135 _58

g, = Amy+ 3 s

& = 40, (18)
If we split H(n) in this way, we obtain the operator H(#) which is diagonal simultaneously
with the set
I 1,Y,C o n,1%1,Y, g (19)
respectively (in general, C and ny are not diagonal simultaneously).
3. In Ref. [5], we paid special attention to the case, where the colour symmetry

SU’(3) is broken in such a way that the subsymmetries SU’ (2) and U’ (1), generated
by the colour-isospin I’ and colour-hypercharge Y’, are preserved. Then

V) =0 = U3, 1—)4 = l_)s = 1-76 = 1_77, 5"1‘1 = 0 (20)
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and hence
dH(n) = 0.

20

In the case of (20), the main conclusions for the gq system drawn in Ref. [5] are the

following:
(i) The lowest-lying state M, is always bound and given by

M, =M, cos 0+ My sin 6,

where
V2Mo+Mg 1 _ _ My—2Mg _
My =—F=— + , Mg= ——-— "=
\/3 NZ (qrgr +av4y) @ \/3 9dsqs
and
2
I3
sin? 0 = 2

5+ (o +d ep+ Vel +5 83 +2,2,)
and sin 0 cos 8 = 0. It is equal to
M- M, if ¢g/e -0,
or alternatively to
M; - M, (or Mg) if &/eg >0 and & > 0(or g <0).
The mass of M is

1o 3
my = mo+e;+3 82_\/31 +3E3+e8,

where
mo = 2mq— T
67 + 85, +20
= 2Amg+tAm)— 278 g,

12
~m—%e (il &le; = 0)

is the mass of M,.
(ii) The state

My= —M, sin 0+ M, cos 6
is not always bound. It is certainly bound and equal to
My—-> Mg if ¢gfe; >0 and 85, < 305+ 30,
or alternatively to

My—> Mg (or M) if &g, >0 and ¢ > 0 (or g <0).

(22)

(23)

29

(25)

(26)

@7

(28)

(29)

(30)

(€)Y
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The mass of My is
my = mo+£,+3 £2+\/8f+g8§+8182 ) (32)
We shall use also the mass of Mg:

90, — 120,40
mg = my+3e, = 2m,— M et B

12
35, —85,+3
= 2(mq+% Arnq)_. }3.__07—& _‘% £
12
~ my—4%$¢, (if /e, =~ 0). (33)
(iify The states M5 and
M. = 3 q(A ids)q (34)
are bound if (and only if)

30, < ¥. 35)

Their masses are

My = Myyy = Mo+i3+e;, = 2m,+ E%E (36)
(iv) The states
M,yis = 3 q(atiis)g, Mgy = 1 q(Astid7)q €Y
are never bound since their masses are
Mysis = Mgypp = 2(my+% Adm)+4 05, where ¢35 =>0.
(v) In the case of exact colour symmetry,
By =0, = ..=170, Am,=0, (38)

only the state M; = M, is bound (it is a particular case of &, = 0).
(vi) In the case of colour symmetry broken at most by the quark-mass difference
Am
q’

U, =Ty, = ... = Ug, 39
only the state M; — M, is bound if
4my /% v, = 0, (40)
or alternatively the states M; — M. (or My) and My — Mg (or M) if
31 9,/dm; -0 and Am, >0 (or Am, <0) @1

(in this case &, = 4dm,).
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Notice that in the case of ¢, = 0 we have Am, = §(—30;+ 20, + ;). Hence, if the
binding condition (35) is satisfied, we obtain 4m, > $7; = }&, > 0. On the other hand,
the case of &, = 0 means that 5, = 0. Then we have Am, = §(—30;+1%)+¢, and, if (35)
is true, we get dm, > ¢,, where g, >0 or g, < 0.

Obviously, all these conclusions concerning quark binding in meson states are valid
only if our theoretical laboratory is relevant.

Strong decays of M; into ordinary hadrons are (strictly) forbidden by the SU’ (2)
symmetry, while for Mg they are allowed because the SU’ (3) symmetry is badly broken
(if M5 and My are bound; cf. (35) and (30), respectively).

Radiative decays of M are forbidden (in the first order) if the coloured part of electro-
magnetic current switches off for the momentum transfer g2 approaching the real-photon
mass shell:

2

total current - Gell — Mann current. 42)
qi-0
Such a property exists e. g. in the case of ‘“‘vector-gluon dominance” over the coloured
part of the photon [6}.

Strong and radiative decays of My (or M) into a number of M, (or M) and
photons (but not into baryon pairs) are damped by ‘“colour Zweig rule” [5] since M, and
M, contain quarks of different colours (cf. (23)).

We can see, therefore, that in the case of (20) and (35) the gq vector bound states of
the SU’ (3)-type M, may be good candidates [5] for the narrow resonances (3105) and
(3695). As suggested recently [7, 8, 9], these resonances might be w and ¢ states with
respect to the ordinary SU(3).

In this interpretation, however, strong and radiative decays of y’s (represented by
M, states) into ordinary hadrons and photons would be also strictly forbidden (by the
SU’(2) symmetry and the possible vector-gluon-dominance mechanism, respectively).
So, the SU’(2) symmetry ought to be also broken, though slightly this time.

4. We shall assume, indeed, that in (10) and (13) the SU’(2) symmetry is broken,
but only by the quark-mass difference dm, = my —my which (by assumption) is much
smaller than m, = my and/or dm, = mg—my. Then

ﬁl = 1’12 = 173, 1_74 = 55 = 56 = i)—7, 5"14 # 0 (43)
and
SH(n) = dmyng (49

can be considered as a small perturbation of H(n)+4H(n).

In the case of (43), we know from Ref. [5] the exact eigenstates of Ho(n)+4H(n)
for the gq system. They are M,, My, M; and M, 4;, (the latter not accessible in the e~et
channel except in pairs) described in points (i)—(iii). (Recall that M, ;s and Mg4;; are
never bound). We shall now denote these states with the superscript zero as they will be
our zeroth approximation to the eigenstates of the total average hamiltonian H(n) for qq
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system. We shall calculate the latter states applying the perturbative method with the
operator (44) as perturbation.
In the first order of this perturbative method we obtain the following gq states:

sin 6 1
My = M +8m, cos 0 —-—~M§{”- S—— (AR
©)_ () (0) ©) '3
my T —my my—m
cos 0 1
— (0) ; (0) e MO
My = My’ +dm, sin 6( © 0 M+ —5—— 1 M3 ),
Yy my my " —my
cos sin 0
©) s (0) (0)
s =MP+om | - ——a MO+ —
3 ? m@—m@® ! mO-—m@® 3 )’
Misi = M@, (45)

The corresponding masses are
my = m{®+8m,cos? 0, my = m{’ +06m, sin® 6,
(V] (V]
my = m§ )+5mq9 My = m(1§n+5mq- (46)

Notice that in (46) there is no splitting between M, and M, because of the fact
that in (10) we have v, = v; and vs = v; due to (43).
If /e, — O then sin? § — 1/3 and we get from (45)

2 IL3 1
(0) (0) (
M; - M +6m, /% (m‘o)— o MO~ ——, Mao)) ,
8 0 —myg

1 23 1
My - MO +6m ———M(°’+ _  M©®]},
I 8 q \/3( 0 m(3°)—m§°) 3

V273 13
(0) A ¥ (U] (0)
My =~ M3 +5mq(—— my —m§> Mo m® —m® Ms “7
and
m - mP+2om, my-> mP+5om, (48)

where m{ and m{ are given by (28) and (33), respectively.
If e5/e; = 0 and &, > 0 (or &; < 0) then sin? § — 0 (or 1) and we obtain from (45)

om

o M (or MY
m® — m(o) ( ),

M[ b d MSB)‘—'

om
() (0) g ()
My - Mg (or My’ - —% © M3,
my’ —mgy

om
{1 q 0
My > MP — —— MY (49)
mg —m;y
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and
my = mY +om, (or my?),  my - my) (or miY +om,), (50)
where
m® = m®,  mP = md+2, (51)

and m§ is given by (36).
Making use of the perturbative formulae (45) we derive the following expression for
the total width of M;:

I'(M; — all) = I'(M; - y - al)+T'(M; - M¥ +all)

2 .2

0
emy?| =27 r(My — all)+
(my—m3)

(M, - all):l . (52)

(my— m3)2

Here, the sum of partial widths of M; for the processes M3 —>y — all and M5 — M5 + all
(where M%" denotes the ground state in the SU’'(3)-family M;) approximates the total
width of M§? because of the absence of strong and (first-order) radiative decays of M
into (ordinary) hadrons and photons.

In formula (52) M, can be identified with an ordinary meson of the same Lorentz- and
SU(3)-characteristics as the coloured meson M;, while My is a third meson of the same
characteristics as M;, whose existence we here predict. It should decay strongly into
hadrons because the SU’ (2) symmetry does not work for its stability. Its decay rate,
however, might be slightly damped by the broken SU’(3) or by the colour Zweig rule.

5. In an obvious notation indicating the SU(3)®SU’(3) characteristics of meson
states, we impose tentatively the following identification of the new particles appearing
in the e—e* channel (for comparison see [7-9]):

w=M,, v31)=M,,;, x41)=M,y
b =My, 937 =Mgs, "7 =My (54)
where by x(4.1) we denote the bump at 4.15 GeV. In particular, we have here the indices
I=0 and II=8 if ¢ =0 (55)
and
I=wre) and I =¢&(r w) if =0
and ¢, > 0 (or ¢ < 0). (56)

Notice that the state Mgy should give a new bump in the total e~e* cross section at the
centre-of-mass energy

~ Myg1y+(My@7y—Myi.yy) ~ 5 GeV.
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In the case of (54) we obtain from (52)
I'(yp(3.1) - all) = I'(yp(3.1) » y — all)
12

cos? 0

2
(mtp(3.1) - mco)

+(5mq)2 [ Iw — all)+ I'(x(4.1) —» all)] (57

2
(m1(4.1)“mw(3.1))

and the analogical formula for v (3.7) with @ and y(4.1) replaced by @ and “?” = Mgy,
respectively, and with the additional cascade-decay term I'(y(3.7) — p(3.1) +all). Putting
in (57)

I'(w —all) = 10 MeV, I'(x(4.1) — all) ~ 300 MeV,

I(w3.1) =y — all) ~ 20 keV (58)

we get the estimate

5 2
I'(p(3.1) - all) ~ [20+ <Mm</) (2 cos® 04300 sin? 6) x 10'3] keV, (59)
€

/’
where

F(p(3.1) — all) ~ 100 keV. (60)

From (59) and (60) we obtain the following magnitude of the quark-mass difference
omy = my—ny:

30 MeV  if ¢ =0,
om | >~ ¢ 200 MeV if g =0 and ¢ >0, 6
20MeV  if g =0 and & <0O.

In consistence with our perturbative assumption, ém, of this magnitude can be really
considered as a small correction to the quark *“true” mass m, = my and also to the quark-
-mass difference Am, = mg—my which, due to the strong breaking of SU’(3) into SU'(2)®
®U’(1) (cf. (35)), should be of a similar order of magnitude as m,.

A question arises whether dm, of the magnitude (61) can be produced by the electro-
magnetic breaking of SU’(3). This would be an attractive conjecture indeed.

6. If we apply the mass formulae (27), (32) and (36) to masses my = m,, My = M, 4,
and m3 = m,; ;, and neglect the small correction dm,, we obtain the following relations:

2
m —m
2,92 x(4.1) ®
&y +7{ 32“}'5182 = (wv——z—__) ’

Mya.1) T+ My

Mmo+e,+3 6, = 5 ,

n10+53+62 = fnw(:;‘l). (62)
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From this system of equations we get &,, &, and m, as functions of 75:

_ 2My3.1y— My—Mya.1)

g = > +33—4 &,(33),
- 1 ” —
&, = &(0;3) = \‘/_i \/(mw(3‘1)—mw—v3) (My4.1y—Myi.1y+03)
My = My.1y— D3 —E€x(03), (63)
where
0 < 1_73 < mw(3_1)—mw. (64)
Hence
Mya.1)

— M, )
R = L9 GeV, (65)

where the lower and upper bound for ¢, corresponds to ¥y = my; ,,—m, and 7; =
= $(2my3.1y— My — My, 1), TESpectively.

The value of v; might be tentatively determined by the additional conjecture that
SU’(3) symmetry is broken (by strong interactions) at most in such a way that not only
the component M; but also the components M, and My of the meson colour nonet sur-
vive as eigenstates if H(n) if we neglect the small correction dH(n). This conjecture
implies that

303 - 267 - 1_78

Adm,+ g Ta= 0, (66)

and

19, =¢ >0, 67
where, of course, the binding conditions (30) and (35) for Mg and M; must be satisfied.
In this case, making use of (62) (or (63)) we determine all quantities ¢,, &,, m, and ¥5:

gy = ﬁ&‘*—‘;—_ﬂ‘-’ = 1.12GeV, mg = m, = 0.78 GeV,

- 3mw(3.1)—2mw"‘mx(4.1) _

Dy 3 = 1.20 GeV. (68)
Hence, using (66) and (67) we obtain
2 -m
5y = -——-—(m"“';’ ©) _ 224 Gev,
244m_+9m —2m,—17
By = a7 MeG1) T4 _ 84m,—0.88 GeV. (69)

3
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Then, from the binding condition (30)
vg > 30,03 = 478 GeV, Am, = § 03+0.11 GeV > 0.71 GeV, (70)

while from the binding condition (35)
Uy > 30; = 3.60 GeV, Am, = § 53+0.11 GeV > 0.56 GeV. (71)

Thus, the condition (30) is here more restrictive than (35). Notice that using (61) we con-
firm that

4m, > 0.71 GeV » idm,| = 0.03 GeV, (72

in consistency with our perturbative assumption. We can see from (68), (69) and (70) that
i, < b, < Da.

Having determined the values of #;, #; and m, as well as the lower bound of &z we can
also evaluate from (28) the lower bound of the quark mass m,:

955 + 60 + g
my = §mo+ —-

> 1.60 GeV. (73)

Hence, for the average quark mass in the non-coloured baryon state

By = £4pcq9.4984c 749

we have

my++ 4my > 1.84 GeV. (75)

The mass of By, which is an exact eigenstate of H(n) for gqq system, is given in the case
of (20) by

mp, = 3 mo+&;. (76)
Hence, if we use (68) we get

mg, = 1.17 GeV an

which is a reasonable value for the average mass of ordinary baryons.

In conclusion, we can say that the possible identification (54) of the new particles is
quite consistent with our theoretical laboratory provided by one-gluon-exchange static
forces mediated between quarks and antiquarks by a colour octet of vector gluons. The
colour symmetry, however, is then forced to be badly broken.

7. Now, we should like to stress that the above discussion of quark binding and colour
symmetry breaking changes much, if the forces between quarks and antiquarks are medi-
ated by a colour nonet of vector gluons [5]. Then, coupling (1) contains the additional
term

8o /3 a1, 00X, (78)
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where Ay = \/271'. In consequence, the term
(n —n‘)2 250
1l Y2 @ T2 (7
b [Uo 6 12 n (79
has to be added to the average potential V() given by (10), where n, and n; are numbers
of quarks and antiquarks, respectively, and we have

n = n,+n; = ng+ny+ng. (80)

If we consider the case of (20), formulae (27) and (32) for my and my do not change,
while formulae (28), (33), (36) and (76) should be replaced by

200 + 9, + 66, + B
my = 2m,— m
20+ 615 + 87, +20
= 2Amy+5 Amy)— %o 0312 TR 2
~ m—% e (if e,/e; = 0), (28)

26, +90; — 120, 4+
mg = my+3e, = 2m,— 0 2 T8

12
20, + 30, — 80,4+ 30
=2m,+2dAm)y— 232 T T8 4,
12

~ my—% e, (if 6,/e; ~ 0), (33"

20,—30,+70
m3 = mliiz = m0+53+82 = 2"’1‘1_ —01—23"'8‘ (36,)

and

mp, = 3 Mmo+3 0o+&q, (76"

where ¢; = Amq+%(3ﬁ3—-57—58) and ¢, = } ¥, are the same as before. Thus, the binding
conditions (30) and (35) for My and M; take now the form

80, < 20+30;4+30; (if &, =0) (30)
and
385 << 205+ Us. (359

Now the states M, ;s and M, ;;, also can be bound, since their masses become

Do —Usg
Myyis = Merip = 2(m,+3 Amy)— 6 (81)

thus they are bound if (and only if)

B > Tg. (82)
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We can see that, in the new situation, the case of exact colour symmetry (38) allows
for the existence not only of the colour singlet M; = M, but also, if the binding condi-
tion (82) is satisfied, of the colour octet My = Mg, M3, M, 1;n, Myy;s and Mg, ,4.

This condition remains true if we break the colour symmetry at most by the quark-
-mass difference Am, and so have (39) (in this case &; = 4m,). The only difference from
the previous case is that now the states M, and My mix (if Am, # 0) to form more stable
states M; and M} given by (22) and (29), respectively.

Notice, however, that the binding condition (82) may be easily in contradiction with
formula (76') for my, since for ordinary baryons and mesons the relation my, ~ 3 my
is in reasonable agreement with experiment (here my ~ my+2¢, if /e, ~ 0). It is so
if (35') implies a value of v, which is too large for (76).

In the new situation, the identification (54) of the recently discovered particles leads
to the same discussion as described before by formulae (62)-(65).

If we now make the same conjecture (66) as before, then also formulae (67)-(69)
remain true though the binding conditions (30) and (35) for Mg and M have to be replaced
by (30") and (35'). So, formulae (70), (71), (73), (75) and (77) take now the form:

Ug > 3 0,—03—% 0, = 478 GeV—3%10,, 4Am, > 0.71 GeV—+% 7, (70"

vg > 303 —20¢ = 3.60 GeV—20,, 4dm, > 0.56 GeV —1 0, (71)
204+ 904+ 60,4+ :
m, =% me+ — 324 778 5 1.60 GeV+-5 B, (73)
my,+5 Am, > 1.84 GeV+5 7, (75"
and
mp, = 1.17 GeV +3 0. ar)

Here ©, > 0 has an unknown value. We can see from (68) and (69) that &5 < #.

Another conjecture than (66) seems to be appealing in the present situation, namely
that the colour symmetry is broken at most by the quark-mass difference 4m, and so (39)
is satisfied. This conjecture implies that

g = dm, (33)
and
&

%57 =%’73 =%l_’s, (84)

where, of course, the binding condition (82) for My and M ; must be satisfied (it is also the
binding condition for M, ,;,, M ;s and Mg, ;7). In this case we obtain from (63)

_ 2My(3.1)— My = Mya.1)
2

g = Adm, = +32 75 = 0.69 GeV,

= __ 1
&y = %05 = 5 [2mya.y—Mu—Myay

+\/(2mw(3_1)“mw—’nx("_.l))z+6(n1w(3.1)— mw) (’nx(4.1)_ ;nw(3.1))] = 0.89 GCV,

n’lo = mw(3.1)-% 58 = 0.45 GCV, 53 = 57 = 1—78 = 1.78 GCV. (85)



740

From (24) and (85) we calculate

sin? § = 0.16 (86)
and then from (59) and (60)
|0m,| >~ 40 MeV. &7
Thus
Am, = 0.69 GeV > [dm,| =~ 0.04 GeV, (88)

in consistency with our perturbative assumption.
From (28'), (82) and (85) we obtain the lower bound for the quark mass m,

Do+ 80
0% — 1.41 GeV++5 i, > 1.56 GeV. (89)

— 1
my = § mo+

Finally, from (76'), (82) and (85) we get the lower bound for the mass mg, of non-

-coloured baryon B,
mg, = 1.37 GeV +3§ 55 > 2.70 GeV (90)

which is in contradiction with experiment. It shows that the conjecture of the colour sym-
metry (39) is wrong if we take the identification (54) for granted, or vice versa.

Concluding we can say that the possible identification (54) of the recently discovered
particles is consistent with our theoretical laboratory based on one-gluon-exchange static
forces mediated between quarks and antiquarks by a colour nonet of vector gluons.
However, the colour symmetry must then be broken and the coupling of the ninth gluon
restricted to a moderate strength.

The author expresses his gratitude to Professor Werner Riihl and to Fachbereich
Physik der Universitit Kaiserslautern for their hospitality extended to him in Kaisers-
lautern, and also to Deutsche Forschungsgemeinschaft for its financial support.
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