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The nonlocal separable nucleon-nucleon potentials, recently applied in the nuclear
matter calculations, are used within the frame of the Brueckner theory for the calculation
of the equation of state of the pure neutron matter. The results for the potentials, which
proved to be most promising in the nuclear matter calculations, coincide with those obtained
for the Reid soft core potential in the lowest order Brueckner theory.

In the last years considerable successes have been achieved in fitting the two-nucleon
data by models of the nucleon-nucleon interaction. These models are based either on the
field-theoretical considerations or on phenomenological description. However the two-
-nucleon data are insufficient to determine uniquely the two-nucleon interaction, e.g.,
they can be fitted equally well by the local [1] as well as the recent nonlocal separable [2-5]
phenomenological nucleon-nucleon interactions. Thus, one needs more information to
reduce the ambiguities in the choice of the nucleon-nucleon potentials. The three- and,
more generally, many-body calculations involve off-shell matrix elements of the nucleon-
-nucleon interaction, which cannot be determined from the two-nucleon data. The simplest
test of this kind is the nuclear (or neutron) matter calculation.

In this paper we present the results of the calculation of the properties of the infinite
neutron matter with the recent nonlocal separable nucleon-nucleon interactions [2-5],
applied just recently in the nuclear matter calculations [6]. Such calculations are of a con-
siderable interest in astrophysics because the recently discovered pulsars are believed
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to be neutron stars, and in the normal nuclear density region (g, = 0.17 nucleon/fm3)
the neutron star matter is expected to consist mainly of neutrons with a small admixture
of protons, electrons and muons {7]. A study of the dense, cold neutron matter, especially
above the nuclear density, represents a very sensitive test for the assumed form of the
nuclear interacticn.

We have calculated the energy per particle in the neutron matter in the lowest order
Brueckner theory using standard approximaticns. The contribution to the potential
energy from L > 2, J > 2 partial waves has been estimated in the first Born approximation
for OP EP. The calculational procedure applied has been essentially the same as that
described in Ref. [8]. We have used the four following parametrizations of the nonlocal
separable nucleon-nucleon interactions: the modified Mongan potential (MS) with the 'S,
interaction of Hammann and Ho-Kim [5] and the original parametrization of Mongan [2]
in the remaining states; the new potential of Hammann, Desgrolard and Chetouani [4]
(HDC); the set I of the Graz potential [3] (G1), and the parametrization of Doleschall [9]
in the P states with the Hammann, Desgrolard and Chetouani parametrization in the
remaining states (HDCD). The parametrizations M5 and HDC supplemented by the
Pieper [10] parametrization of the interaction in the 3S,—3*D, channel appear to be most
promising nonlocal separable interactions in the nuclear matter calculations, where they
give for the first time results similar to those obtained with the Reid soft core (RSC [1})
potential [6]. On the other hand they reproduce very well the two-nucleon data. Our
results for the energy per neutron in neutron matter, shown in Fig. 1, reflect the specific
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Fig. 1. Energy per neutron in neutron matter (in MeV) versus k¢ (in fm™) for the potentials considered.

The lowest order Brueckner theory results of Ref. [11] for the RSC potential are also shown for com-

parison. The parts of curve M5 for kp < 2.5 fm™ and curve HDC for iy < 2.3 fm~! cannot be graphically
distinguished from the RCS curve
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properties of the neutron-neutron potentials. Up to the density corresponding to kg =
= 2.5 fm}, which is 3.2 times greater than the normal nuclear density gy, our results for
the M5 and HDC potentials coincide with the lowest order Brueckner theory resuits of
Siemens and Pandharipande for the RSC potential [11]. On the other hand, the G1 para-
metrization, which overbinds nuclear matter at the too high equilibrium density, leads
to the E/N values which are considerably lower than those obtained for the RSC potential.
The parametrization of the nucleon-nucleon interaction in the P states, introduced by
Doleschalt [9], yields an excellent fit to the two-nucleon data. However, this force leads
at the normal nuclear density to the P-waves contribution to the potential energy of nuclear
matter, which is 5— 6 MeV more repulsive than the corresponding RSC contribution [6].
The same effect, however much more pronounced at higher densities, is observed in our
neutron matter results. e.g., at p = 3.2 g, the HDCD potential yields the total P contri-
bution which is 14 MeV greater than the corresponding RSC contribution. In our opinion
this effect is due to the quite unusual form of the off-shell extension of the on-the-energy-
-shell interaction. Namely, the Doleschall formfactors resemble rather Padé approximants,
while in the M5, HDC and Gl parametrizations the generalized Yamaguchi [12] form-
factors are used.

The lowest order (standard) Brueckner theory with zero potential energy in the inter-
mediate states gives only the two-body contribution to the potential energy per particle
in neutron matter. The higher order contributions from the Goldstone diagrams with
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Fig. 2. Values of the defect parameter (in %) versus kg (in fm~*) for the potentials considered. The lowest
order Brueckner theory results of Ref. [11] for the RSC potential are also shown for comparison

three and more hole lines should be calculated explicitly and added to the two-body contri-
bution. The importance of these higher order contributions is determined by the defect
parameter k, which gives a measure of the average probability of a normally occupied
neutron state being empty [13]. Calculated values of defect parameter for the potentials
considered, plotted in Fig. 2, suggest that the lowest order Brueckner theory with these
potentials could be applied to neutron matter at the densities much higher than the normal



752

nuclear density. However, at high densities (corresponding to kz = 2.7 fm™! in the case
of the HDCD potential and kg greater than 3.3 fm~! in the case of the remaining potentials)
the single-particle potential for the hole state becomes positive near the Fermi surface,
leading to the unphysical singularities in the two-neutron propagators. Thus, the choice
of the zero single-particle potential in the intermediate states, so successful near nuclear
density, leads to the failure of the calculational scheme at high densities.

The quantity of interest for astrophysical calculations is the pressure of neutron
matter, P, which is related to the slope of the E/N curves shown in Fig. 1. The pressure
of a substance at zero temperature (or entropy) is related to the energy per particle by:

p_2d(E
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where in the case of neutron matter ¢ =

The functional dependence of the pressure on the density (equation of state) can be
combined with the equations of gravitation of the general relativity theory so as to get
the distribution of density and pressure in a neutron star. Our results for the P(g) are
given in Table 1. The results for the M5 potential coincide quite well with those obtained

TABLE I
The equations of state for the potentials considered
x P
(fmli 1y ( fmi) (dynes/cm?)
M5 HDC | G1 HDCD

0.5 4.22x 1073 7.27 % 103° 6.93 x 10%° 7.38 % 10%° 7.78 x 10%°
1.0 3.38x 102 1.74 x 1032 1.60 % 1032 2.14x 1032 2.01 x 1032
1.3 7.42x 102 7.24 x 1032 6.93 x 1032 8.45x 1032 7.98 x 1032
1.6 1.38x 10~ 2.66 x 1033 2.67%x10% 2.56% 1033 2.95 %1023
1.9 2.32x 10! 8.41x103%3 8.52x 1033 6.61 x 10%3 9.85x10%3
2.2 3.60% 10! 2.25x 1034 2.24 x 1034 1.58 x 1034 - 2.81x10%
2.5 5.28x 10! 5.22x 1034 5.05x 10%¢ 3.70 x 1034 6.91 x 103+
2.8 7.41 x 10! 1.07 x 1033 9.95x 1034 8.34x 10°+

3.1 1.01 2.02x 1033 1.81 x 1038 1.78x 1033

33 1.21 2.95 % 1035 2.55x%103% 2.81 x 1035

for the HDC potential. On the other hand, the behaviour of P(p) for the G1 and HDCD
potentials is quite different. Namely, in the normal nuclear density region the G1 potential
yields the much ‘‘softer” equation of state, while the neutron matter with the HDCD
potential is much “stiffer”. The RSC results of Pandharipande [14] are in agreement with
our equations of state for the M5 and HDC potentials at the densities ¢ < 0.5 neutrons/fm?3.
At higher densities, however, the M5 and HDC potentials yield the equation of state
which is “‘softer” than that obtained by Pandharipande [14] for the RSC potential in the
lowest order variational calculation.
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