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The magnetic susceptibility of neutron matter is calculated in the lowest order Brueckner
theory for the Reid soft core potential. The rearrangement contributions calculated using
the approximation of Brueckner and Gammel are important at the highest densities con-
sidered. Contrary to the case of liquid *He, the results obtained using Brueckner and Gam-
mel approximation coincide with those obtained by the other authors within the frame of
the Landau theory of Fermi liquids.

It is currently believed that pulsars are rapidly rotating neutron stars possessing
very intense magnetic fields [1], and hence the magnetic properties of the neutron star
matter are of a considerable interest. In the normal nuclear density region neutron star
matter is believed to consist mainly of neutrons, with a small admixture of protons, electrons
and muons [2]. Some of the neutron star matter calculations [3] indicate that also at high
densities (kg > 3 fm') the ground state of the cold dense matter could be nearly pure
neutron matter. Thus, pure neutron matter appears to be a meaningful approximation
of the real neutron star matter near and above normal nuclear density.

Let us consider neutron matter composed of N neutrons. In the presence of an external
magnetic field, the two spin populations will no longer be equal in the ground state, and
the total energy of the system will be a function of the spin excess parameter
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where N, and N, are the numbers of neutrons with spin up and spin down with respect
to the direction of the applied field. The nuclear energy per particle expanded in powers
of o takes the form [4]
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where ¢, is the energy per neutron in unpolarized neutron matter (x = 0), ¢, is the spin
symmetry energy of neutron matter and the spin excess parameter « is assumed to be small,
so that the terms proportional to «” (n > 2) can be neglected. The magnetic susceptibility
of neutron matter is then given by

r=—> 3

where ¢ is the density of neutron matter and the neutron magnetic moment is denoted
by u,. For the sake of convenience one introduces usually a ratio of y and the magnetic
susceptibility of the Fermi gas of the free neutrons, yg,
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where ep is the Fermi energy for unpolarized neutron matter with N, = N, = 1 N.
The spin symmetry energy ¢, is given by
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The nuclear potential energy of the system, calculated in the lowest order Brueckner
theory depends on x in two ways: firstly, through the upper limits of the sums over neutron
momenta inside the corresponding Fermi seas, and secondly, through the intrinsic depend-
ence of the effective neutron-neutron interaction in neutron matter (the K matrix) on the
two Fermi momenta for neutrons with spin up and spin down,

&)

a=0

K2 = k(1+a), (6a)

2 = k(1 -a). (6b)

Hence, when we calculate the second derivative of E”, Eq. (5), we get two parts of ¢,
g, = &+ de,, )

the first (nonrearrangement) part, £, resulting from the first type of the dependence, and
the second (rearrangement) part, 4¢,, resulting from the second type of the dependerce
of E” on a. Final expression for ¢, is given in Ref. [4]. The expression for the rearrangement
part of ¢, contains first and second partial derivatives of the diagonal elements of the X
matrix with respect to Fermi momenta, calculated at the point k = A = kp. Although
it is possible to calculate the K matrix which depends on two different Fermi momenta,
this calculation is very tedious [5]. On the other hand, an approximation introduced by
Brueckner and Gammel [6] in their paper on the properties of liquid 3He, generalized
subsequently by Brueckner and Dgbrowski [7] to the case of nuclear matter with neutron
excess and by Dabrowski and Haensel to the case of the polarized nuclear matter with
neutron excess [8], enables one to calculate d¢, using the K matrix for unpolarized neutron
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matter. The BG approximation for the diagonal elements of the X matrix in the represen-
tation of the total spin of the neutron pair has the form

K(S:],ms=l;K/'L)zK(S=1,mS=1;K), (88)
Y K(s, mg = 0;k4) & Y. K(s, m; = 0; w), (8b)
where
w = 2_1/2(K2+}.2)1/2,

and where the K matrices on the right-hand side of Egs. (8) are calculated in the case of
o = 0, with the indicated value of the Fermi momentum.

The magnetic susceptibility of neutron matter can be also calculated within the frame
of the Landau theory of the normal Fermi liquids [9]. In this approach the quasi-particle
interaction is calculated as the second functional derivative at the Fermi surface of the
potential energy of the system with respect to the distribution of particles. The magnetic
susceptibility can be expressed with the help of the zero-order Landau parameter of the
spin dependent part of the quasi-particle interaction, go.

These two approaches have been previously applicd to the calculation of the magnetic
susceptibility of liquid *He [10, 11]. The results of these calculations are in complete
disagreement with the experimental value of the magnetic susceptibility of liquid 3He.
Both calculations have been reviewed critically by Biackman [12], who concludes that
the divergences between the Landau theory values of Bertsch [10] and the values obtained
with BG approximation by @stgaard [11] result from the incorrectness of BG approxima-
tion. Let us notice that contrary to the opinion expressed in Ref. [10] the use of the densities
of the spin up and spin down particles instead of the two different Fermi momenta does
not change the final results: these two sets of variables are mathematically equivalent.
In our opinion, these divergences result mainly from the fact that both authors use the
lowest order Brueckner theory expression for the potential energy of the system./The
lowest order (standard) Brueckner theory with zero potential energy in the intermediate
states gives only the two-body contribution to the potential energy per particle. The higher
order contributions from Goldstone diagrams with three and more hole lines should be
calculated explicitly and added to the two-body contribution. The importance of these
higher order terms is determined by the defect parameter x [13]. However, the value of x
is of the order 0.4 for liquid 3He [11] and hence the lowest order Brueckner theory expres-
sion for the potential energy of the system is inadequate [14]

In contrast to the case of liquid 3He the values of x for neutron matter are quite small
even for the densities much higher than the normal nuclear density [2]. E.g., the value of x
for the Reid soft core (RSC) potential [15] is less than its nuclear matter value (x = 0.13 at
the normal nuclear density go = 0.17 fm~3) even at the density of neutron matter p =
= 3.2 po [16]. However, up to now, no attempt of a complete calculation of yg/yx in
Brueckner theory with RSC n-n interaction was made (in Clark’s calculation {17] the
rearrangement contribution to xg/x was neglected). In the present paper the magnetic
susceptibility of neutron matter is calculated in the lowest order Brueckner theory with
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the RSC potential, the rearrangement contribution being calculated in the BG approxi-
mation. The calculational procedure has been essentially the same as that presented in
Ref. [18]. The differentiation of the K matrix was carried out numerically, by making
finite shifts in the Fermi momentum and repeating the whole selfconsistent calculation.
Then the derivatives were determined from the resulting shifts in the K matrix. The contribu-
tion to yg/x from J > 2 partial waves was estimated in the first Born approximation for
OPEP.
The quotient yg/x can be splitted into two parts,

xelx = Gelo + (el g

TABLE [
Results for magnetic susceptibility of neutron matter with the RSC potential

ke i
(fm™") 7 Jo

(;/;5) e
X /R ! z

1.4 1.89 0.06 1.95
1.7 1.99 0.21 2.20
2.0 2.10 0.34 2.44
2.2 2.18 0.41 2.59
2.5 2.29 0.45 : 2.74

where (yg/2)o and (xg/x)r are, respectively, the nonrearrangement and rearrangement
parts of yg/x. The results for several values of & are given in Table I. The rearrangement
contribution is negligible at low density, but becomes quite important at highest densities
considered. In Fig. 1 the values of (xg/x)o and yp/x are plotted versus kg Our values of
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Fig. 1. Results for the magnetic susceptibility of neutron matter with the RSC potential (solid line). Dashed
line corresponds to our (zg/y)e and dash-dotted line represents the results of Ref. [19]
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(x¢!x)e coincide with those obtained by Clark [17], who performed his calculation in the
density region corresponding t0 0.78 fm~! < k; < 2.02 fm~'. The RSC results of Bickman,
Kiliman and Sjoberg [19], obtained within the frame of the Landau theory of the normal
Fermi liquids, are also shown for comparison. In contrast to the situation in the case of
liquid *He, the results obtained using BG approximation for (yxz/yx)z agree very well
with those obtained in the Landau theory. Thus, we conclude that BG approximation
gives quite good estimate of the rearrangement contribution to the magnetic susceptibility
of neutron matter. On the other hand, the formulae of Ref. [12] lead to the yg/y values
which are substantially higher than those obtained in Ref. [19].

The author is indebted to Professor J. Dabrowski for pointing out the error in Ref. [12]
and for reading of the manuscript.
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