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An exactly soluble model for the volume conserving pairing is formulated. It is shown
that the non-zero equilibrium energy gap exists only in nuclei having irregularities in spectra
near the Fermi surface.

Recently a variational method [1-3] of calculating the parameters of the pairing
interaction based on the condition of volume conservation was proposed. As a result of
the numerical calculations [2-4] it was found that the method can be successfully applied
for spherical and deformed nuclei. However, these calculations include many detailed
procedures which are important for obtaining a quantitative agreement with experimental
data, though at the same time they make the method complicated and unclear. In such
calculations it is rather difficult to extract the essence of the mechanism which is responsible
for the appearance of the energy gap in the spectra of nuclei. It would be very useful in
this connection to investigate the problem in the highest degree of simplification, i.e., to
formulate and to solve the model problem. In the traditional approach to the pairing inter-
action there is a well-known, exactly soluble model described in Ref. [5]. One investigates
in this approach the equidistant single particle spectra with a density of levels high enough
to replace the summation over the energy levels by integration. We will formulate the
problem within this model and solve it using our method. Maximum simplicity is obtained
when the total energy of the nucleus is written in the oscillator bases

E = [ﬁ Z 8v2Vv2_A Z UvVv]hw(A)’ (1)
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where w is the oscillator frequency, ¢, — the single particle energies of levels in the hw
units, 4 — the energy gap parameter in the same units, U, and ¥, — coefficients of the
Bogolyubov transformation.
The origin of the numerical factor § requires special discussion. It is clear from the
H.F. theory that in Eq. (1) the expression: & = 13 (r,+¢,)2V2, where ¢, is the mean
v

kinetic energy in the state v, should be written instead & = B Y. ¢,2V;. For the harmonic

oscillator ¢, = }¢, and, therefore, § = . If the energy in the square well potential is
counted from the bottom of the well then 7, = ¢, and, consequently, f = 1. A realistic
potential of the S.-W. type has an intermediate shape between these two extreme cases.
Therefore, the value of the shape parameter f for the S.-W. potential must lie in the interval
% < B < 1. The main idea of the method described in Refs [1-4] is that in varying 4 we
keep the volume of the nucleus, @, constant. In Refs [1-4] the conservation of @ has
been ensured by keeping the mean square radius of the nucleus constant. For the harmonic

oscillator
s h 5 2
<r > = (Nv+—f)2Vv'
nw

Using the relation ¢, = N,+3 we get
h
Py = — &,2V7, @
mo

v

where m is the mass of a nucleon. The value of {r%) does not depend on energy for the
square well potential, hence,

(r?*y = const. (3)

Formulae (2) and (3) can be combined to

R h 5 h n
ey = — (a+ne )2V, = —1{aN+ —é”),
mw mw B

where N is the number of particles, and a and # — two additional parameters characterizing
the shape of the potential. In the case of the harmonic oscillator @ = 0, # = 1. For the
square well @ # 0, n = 0. The mean square radius {r%) is constant if

w(4) = const Z (a+ne)2V}? =c (aN+ %é’) .

Let us now introduce the notation P = A4 U,V,. Then, the energy is given by
v

E = (6= P)c (aN+ %éa>
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By differentiating the energy E with respect to 4, we get the equation for the equilibrium
energy gap

n dé
(aN+B£>—(@@ P)+(&— P)EéZ 0. (4)

The quantity P can be neglected in comparison with E. Further simplification of the
equation (4) can be obtained in two extreme cases: for the harmonic oscillator,

d
and for the square well,
d

In order to retain simplicity for a more general case, we introduce a parameter o = 28 = 3
for the oscillator, and a« = § = 1 for the square well. For more realistic potentials the
parameter o will take intermediate values. Therefore, the equation for the equilibrium
energy gap can be written for a general case as

d ’
g -P=0 )

where

=a) &2V
Changing the summation in Eq. (1) into the integration we get

&—P=p g [uz—(uu) (=2 +ADHV2 4 J(A2 + 4H?

1\ . p=i+((u—=A"+4H"*
+(1—&>A R W ] ®

where g is the density of levels and u is the upper limit of the spectrum. From the require-
ment of conservation of the particle number we get

(u=A*+4H)'"? = p=24+ (1> +4°)'2, ®)
N . . . .
where A, = — is the chemical potential at 4 = 0. By squaring both sides of Eq. (9) a very
e
useful relation is obtained:
(A2 + 4117 = [220(p—A0)—1A] (1—240) ",
4% = Mo(u—2o) (o — ) (u—2A— o) (—240) "% (10)
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Further simplification of the equation (8) can be obtained, using relations (9) and (10).

a{ 24 i U—A—4g
& —P=p- 2M(—Ao)—pho]+ {1— =) 4 In———% . 11
ez{u_%[ﬂ(ﬂ 0)— #ho] < a) - } 11)
Hence, the derivative takes the form
d M—Aﬂ._lo [1—22.0
—— (& —P) = o4 —DIn —— —Ru—-1 . 12
—~(&'=P) e[(a e R CE b (12)

It is clear from (7) and (12) that the energy E always has an extremum at 4 = 0. In order to
find the remaining extrema it is necessary to solve the equation:

1 gt (13)
nx=B—-
x+1
—i-2 20—1
where:x=u /oygand B = ? . In terms of x
Ag— 4 o —
5= [hG+D—ul =17
4% = bx(x—1)"%, b = 42y(u—Ay).
—1
The functions In x and B—x:T are shown schematically in Fig. 1. It is easy to see that
X

there exist three crossing points, namely 0 < x, < 1, x, = 1, and x; > 1. The solution

f(x)

. . -1
Fig. 1. Graphical solution of Eq. (13) and {18). Thick curve — f(x) = Inx, broken curve — f(x) = B ol

x+1’
x—1 3 e (u+(u+b(x—1)%)?
—_ = e— B e —

dotted curve — f(x) x—H{ + 25 T x—I))% }
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x, corresponds to the negative value of (A2+42)!/2 and has no physical significance. It
appears as a result of squaring the equation (9). The solution x, corresponds to 42 = ©
and is therefore of no interest to us. What remains is x;. It is easy to see from Fig. 1 that
the derivative (12) is positive for 4 < 4(x;) and negative for 4 > A4(x;). Consequently,
the extremum at 4 = A(x;) is the maximum. Fig. 2 shows the dependence of the energy E

Fig. 2. Dependence of the total energy of the nucleus E on 4 in the case when the equilibrium energy gap
is equal zero

on 4 for this last case. The first non-trivial result of the model can be formulated in the
following way: If the nucleus has an equidistant spectrum and a smooth dependence of
{r?> on ¢, in the vicinity of the Fermi surface, then the equilibrium energy gap is equal
to zero. For real nuclei this situation is very improbable. First of all, there exist fluctu-
ations of the level density which create shells and subshells. Besides this, the Is-force and
the deformation can push down some levels with small {r2). Thus, the dependence of
{r2) on ¢, near the Fermi surface can be quite irregular. Both factors may lead to a non-zero
equilibrium energy gap. In the case of the shell effect this was shown in Ref. [1]. We exam-
ine here the second case. Let us investigate the dependence of {rZ> on &, shown in Fig. 3.
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Fig. 3. The imitation of the irregularity of <r?) as a function of
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It imitates irregularity in the {r2) distribution by introducing a single jump at the Fermi
surface
a+ne,, g, < Ag
> =

atn(e,—e), &, > ig.

Instead of Eq. (4) we now have
n
w(d) = ¢ |:aN+ E(é"—-ﬁew)il ,
where = ¥ 2V Therefore

E =(&—P) [aN-i— %(é”-ﬁetp)} >

and varying E on 4 we get

" )| Le—pr+Ee-p " (4 _pe¥) -
l:aN+B(£—ﬂew):|dA(6 P)+(¢ P)ﬂ<dA ﬁed—A)—-O. (14)

Neglecting here P and fey in comparison with &, we get the equation for the equilibrium
energy gap which simplifies considerably in the case of the harmonic oscillator

d
— (26 —-P— =
7 A( & Pey) =0 15)
and in the case of the square well,
d (6-P)=0 1
dA - ( 6)

Introducing once more the shape parameter o one can replace Eq. (14) by a simple equa-
tion containing (15) and (16) as the extreme cases

d ’ 3
i —P—3(a—1)ey) = 0. a7

d
This equation differs from (7) by the term 3 e(x—1) *A%". Carrying out the calculation simi-

larly as before, we see that the solution 4 = 0 always exists. The extrema at 4 # 0 are
given by the equation

(2 _1)\1/2y2
1nx=(x—1)(x+1)‘1[3+%3(” W +bG—1) )] (18)

b (WP +b(x—1)2

The right-hand side of Eq. (18) is schematically presented in Fig. 1 (by the dotted line).
If ¢ is small (as it should be) and if the remaining parameters have reasonable values,

e
then n < B. Hence, it is clear that for small values of x the whole picture practically does
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not change and the point x; is not shifted. With increasing x the second component
in the square bracket becomes important. At large values of x this component increases
as x'/2, therefore the right-hand side of Eq. (18) becomes larger than In x. Thus, it is clear
that there exists one more intersection x,. It is easy to see that the extremum at 4, cor-
responds to the minimum of E. The dependence of E on 4 for this case is shown in Fig. 4.
One should also mention the case in which the value of e is so large that for any x > 1

Fig. 4. Dependence of the total energy of the nucleus E on 4 in the case of a non-zero equilibrium energy
gap (full line). The broken line represents the energy E(4) for the unphysical values of the model
parameters

the right-hand side of Eq. (18) is larger than In x. This means that the solution at x > 1
does not exist. The curve E(4) is then given by a broken line in Fig. 4. However, this
case does not occur in real nuclei. If an anomalous decrease in {72} at the Fermi surface
really occurs, it is always compensated by an increase in {r%y in the neighbouring part of
the spectra. In order to prove the physical significance of the model let us estimate its
results for reasonable values of the parameters. For the harmonic oscillator the minimal
value of e should be of the order Aw. For 4 ~ 150 nuclei 1o ~ 5 hw and therefore
e ~0224,. For u=234 we get: x5 ~ 155, 45 >~ 0234y, 43 ~0.994 1,, x, =~ 670,
Ay ~ 0.11 Ay, A4 = 0.998 4.

Let us investigate an intermediate case between the harmonic oscillator and the
square well potential: « = 1.3. The mean square radius {r?y now changes much more
slowly and therefore the minimal value of e should be chosen small. For e = 0.1 4, one
gets: x5 =~ 890, A3 ~ 0.095 Ay, 43 ~ 0.9989 1o, x4 =~ 2120, 4, ~ 0.061 Ay, A4 =~ 0.99954,.

One may therefore conclude that for reasonable values of the parameters the model
gives reasonable results and can be used as a simple qualitative way of understanding what
happens in more complicated, realistic situations.

The authors would like to express their sincere thanks to Dr Z. Bochnacki for much
advice and to Dr I. N. Mikhailov for valuable discussion and comments.
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