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By using the theory of fiber bundle, the path dependent quantities used by Mandelstam
to derive the Feynman rules for the Yang-Mills and gravitational fields are shown to be just
the quantities taken on a horizontal path of a fiber space. This geometric meaning enables
us to construct new path dependent quantities remaining unchanged under gauge transfor-
mations.

1. Introduction

In references {1, 2] Mandelstam has developed a beautiful general gauge independent
formalism for quantization of Yang-Mills and gravitational fields. The most important
step in this formalism is the construction of the so called path dependent quantities.
When constructing the path dependent quantities in the Yang-Mills fields [1] and gravita-
tional fields cases [2], Mandelstam has used respectively the matrix constructed by
Bialtynicki-Birula [3] and the tetrad technique. In this paper we shall use the theory of
fiber bundle, which is very adequate for the description of gauge fields, to show that the
methods of constructing path dependent quantities used in [I, 2] despite the apparent
difference have a common geometric meaning. This geometric meaning enables us to
construct, in the case of gravitational fields, other path dependent quantities (besides
Mandelstam’s ones) which remain unchanged under gauge transformations.

2. Fiber space

The structure of fiber space on E is defined by the set E(B, F, G, p, ) where: B is the
base, F — the fiber, G —the structural group acting on the fiber F, p —the projection: E—>B,
& — a family of homeomorphisms ¢,: U, xF — p~' (U,) (U, is an open set of B)satisfying
well known conditions [4].
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The case of interest is the one when F and G are the same manifold. In this case the

fiber space is called the principal fiber space. We limit ourselves from now on to the prin-
cipal fiber space.

Let us denote the vectorial space tangent to £ and the subspace tangent to the fiber at z
respectively by ©, and V.; a vector is called vertical if it belongs to V, and horizontal if
it belongs to H, = ©,\V,; a path of E is called horizontal if its tangents are horizontal;
the horizontal path remains horizontal when the fiber is subjected to the transformations
y € G. The infinitesimal connection is then defined by a differential form of degree 1
{1-form) w with values on the Lie algebra L of G, i.e. if 1 € O_, w(7) is the element of L,
generated by the vector ¥Vt e V_, where ¥z is the vertical component of t.

The connection w may be written in the form

o = [0?L,]3®6", 2.1

where [L¢]§ — matrix elements of generator L, of the algebra L, 0" — corepére on the base
space ¥, (manifold of n dimensions).
The connection has two important properties:

1) if 7 is horizontal then w(1) = 0, (2.2)
2) efzy) = [ad] vyl w(r),yeG. 2.3)

Cover V, by an open set {U,}. For xe U, () Uy we can find an element y,4(x)e G
so that

z5(x) = Z(X)7,4(X), (2.4)

where z, is the local section of E over U,. The local secticn of E is the mapping p, satisfy-
ing the condition pu(x) = x.
From (2.4) we obtain

dzp = dz,y,5+ Zp7ap dVap-
Setting w,(dv) = w(dz,), and using (2.3), we get
wy = [adj 74" 10, + 725" d7p. (2.5)

In particular when z lies on a horizontal path, using (2.2) we have instead of (2.5) the
following equation

Onp = Vrap@Vrap- (2.6)

The connection w is related to the 2-form curvature Q of type adj ¢! and the 2-form
torsion Z, respectively, by the structure equations

Q=doto A o, 2.7

S =di+w A0, (2.8)

where 0 — arbitrary corepére.
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It is easy to show that @ and X transform as follows:
Q - yQy~1, (2.9
X —yZ, (2.10)

when z is subjected to the transformations (2.4).

3. Yang-Mills fields

Let us consider now the Yang-Mills fields. The fiber space is then

E(Vy) = U w(x), 3.1)

xeVa

where p(x) = {x, D} is the set of internal repéres over x obtained by operating matrix D
belonging to a SU(2) representation on a chosen system of basic vectors. The projection:
p.E -V, maps every internal repére over x into x. The base space V, is the Minkowski
space-time. The fiber F, to which y(x) is homeomorphic, may be identified with the structural
group SU(2).

The Yang-Mills fields are just the connection @ of the fiber space (3.1). We deduce
now the transformation law for the Yang-Mills fields when the fiber y(x) suffers the trans-
formation of the type (2.4)

p'(x) = p(x)S~H(x), SeSUQ). (3.2)
In view of (2.5) we have

A(dx) = adj S~ A'(dx)+S5-dS. 3.3)

Using natural corepére dx* we have from (3.3) the transformation law for the Yang-
-Mills fields

A, =S4, S+S5719,8S. (3.9

Equation (2.6) in the case of Yang-Mills fields is

0,Sy' = —A,Sy". (3.5
The solution of (3.5) satisfying the boundary condition Sgl__ = I is given by
- .:;Audy“
Spt=1Le = (3.6)

where L indicates that matrices 4 are to be ordered from the beginning to the end of the
path when expanding the exponential. We can rewrite (3.6) in the following form

Sit=1— [ Ax)dxi+ [ dxt [ dxid(e)dy(xs)—...

In view of (2.4) the horizontal path is

eI
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The matrix Sg* coincides with the matrix constructed by Biatynicki-Birula [3] and
w(x)Sy' is a path dependent quantity according to Mandelstam’s terminology [1, 2].

Thus the Biatynicki-Birula matrix and Mandelstam path dependent quantities
acquire now a new geometric meaning. The matrix §y when operating on an arbitrary
path transforms it into a horizontal one, in other words the matrix Sy when operating on
an arbitrary corepére transforms it into a corepére in which the connection vanishes
locally.

Without any algebra we can show that Sy transforms as

Sy = SpS~!

when o suffers the transformation (3.2).
In fact as a horizontal path remains horizontal under the transformations of G we
have therefore

pSy' = pSTISSy' = pSy'.
This property may be shown directly by using (3.5) (see [3]).
Consider now the curvature of the fiber space (3.1). Using, as before, natural corepére,
we obtain from (2.7)

B, Ay — 0,4+ ApyAf,— A4S, = 3 F; G.7)

Jshtvr

where latin indices i, j, k refer to SU(2) transformations. In (3.7) the curvature tensor F },w
is connected with the curvature form Q; by the relation

Q=3 F, dx" \ dx". (3.8)

Using the transformation law (2.9) one can show that the path dependent quantities
SyQS;' remain unchanged under the transformations (3.2)

SEQS;' — S,ST'SQSTISS;t = SQS;t. (3.9)

The quantities (3.9) are just the path dependent functions used by Mandelstam for
quantization of the Yang-Mills fields [1]. Geometrically (3.9) means that on a horizontal
path the curvature does not suffer any changes under the transformations (3.2).

4. Gravitational field

We shall consider different fiber spaces

E(Ry) = U M(x),

xeRg4

where M(x) is a set of repéres with origin at x, R, — 4-dimensional Riemann manifold.
For M we shall use natural repéres or tetrads. The Riemann connection [4] I' in every
case may be found from the equations
Ve = dgAB"FigCB_FggAC =0, 4.1)
2=d0+T'A0 =0, 4.2)
where g, is the metric tensor.
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a) Using natural corepére dx" from (4.1) and (4.2) one can express the connection Ig,
and the curvature Rj; in terms of g,, by wellknown relations. When the coordinates
suffer the transformation

dx" = C¥dx’ 4.3)
one can deduce from (2.5) the transformation law for I' and R
% = Cir&ICT TR ICT B+ Clo, [CT T
%o = CIRS,ICTI[CTT[CT T,
b) Let us consider now the corepére formed by
dx® = hudx*. “4.49

The structure group is now the Lorentz group. In (4.4) the latin indices refer to the local
Lorentz transformations and Aj, called tetrad, is a 4-vector with respect to the transfor-
mations of curved coordinates. Under the local Lorentz transformations

dx® = I5dx® 4.5)
the tetrads transform as follows:
Hy = I3k, (4.6)
From (4.1) and (4.2) we have
Td,+Id., =0, @.n
Orohyg = Tauhly, (4.8)

where d,, is the Minkowski metric. Equations (4.7) and (4.8) admit as solution the following
connection

Iy, = hyhy Iy, + 00,k = R0+ hyOp,hoy + hHhyh, O by, 4.9)

uls

where A} is defined by AAy = 3 and latin indices are raised and lowered by J,,. Using
the structure equation (2.7) it is straightforward to show that

by = HghoRE .. (4.10)

Under the transformations (4.6) the connection and the curvature transform as follows:
ry, = Lre L' + Lo, L5, 4.11)

Rg:,uv = ECV[L" IJZ’R;,uv' (412)

The matrix ¥y, necessary for transforming an arbitrary path into a horizontal one, is
determined by an equation, analogous to (3.6)

dvit = =TIV, (4.13)
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where ¥; may have two greek indices or one greek and one latin index depending on what
corepére we want to obtain

dx" = Vjdx", (4.14)
or

dx® = Vp,dx". (4.15)

In the latter case V4, form a tetrad and (4.13) can be expressed in the form of equation
(4.5) of Ref. [2]:

Q[ Va 15 = =TIV BlVe 105 (4.16)

According to (2.4) the horizontal path is MV ;. As the horizontal path remains horizontal
under the transformations (4.3), it is easy to show that ¥, transforms as follows:

Vy = VyC™ L (4.17)

Let us turn now to the path dependent curvature. Using (2.9) and (4.17) it is easy to con-
struct the following quantities, which remain unchanged under the transformations (4.3):

Ve "TelVir ' 1aViae Ve "1RG s (4.18)
(Vi 150V "BV [V 13RS - (4.19)

The quantities (4.18) have been used by Mandelstam [2] to derive the Feynman rules
for the gravitational field (cf. (4.15) in [2]). One may as well start from (4.19) which can
be used as new path dependent quantities for the quantization of gravitational field in the
framework of Mandelstam’s coordinate independent formalism.

Thus the path dependent curvature in both cases (Yang-Mills and gravitational
fields) is shown to be just the curvature taken on a horizontal path of a fiber space. The
theory of fiber bundle furnishes a unique interpretation of Mandelstam’s path dependent
quantities.
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