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The method of sidewise dispersion relations is used for the calculation of anomalous
magnetic moments (a. m. m.) and constants of “weak magnetism’ of electromagnetic and
weak B(JF = 1%) = B'(JT = 3+) transitions. The performed analysis showes that the values
of a.m. m. of octet baryons calculated with the method mentioned above, and comp-
ared with the experimental data and the ratio of “weak magnetism”™ constants of different
weak baryon-baryon transitions do not contradict the predictions of Cabibbo’s model.

1. Introduction

The dispersion relations for the electromagnetic vertex of nucleon as the function
of the nucleon mass were tackled for the first time by Bincer [1]. Later on, the approach
proposed in [1] was frequently discussed in literature and it proved to be a fruitful method
of investigating electromagnetic vertexes of fermions (see, for instance, the bibliogra-
phy given in [2]).

The method under consideration, as well as the assumption concerning the importance
of the low-energy intermediate contributions in the electromagnetic vertex B(p? # m})
— B(p? = m3)+y* (B — baryon with I¥ = 1+, * — virtual y-quantum) allow one to
connect the electromagnetic characteristics of baryons (anomalous magnetic moments
(a.m.m.), electromagnetic radii and so on) with the constants of BBM-interaction and the
amplitude of process MB — By* in the treshold region of energies (M is a pseudoscalar
meson). In [3] to calculate the a.m.m. of baryons the amplitude of process MB — By
near the threshold was approximated by the contributions of Born’s terms with the pseudo-
scalar — BBM — coupling. 1t is known that Born’s approximation cannot be applied to the
process of photoproduction of n°-mesons [4]. In the latter case the approximation of
the model of algebra of currents seems to be more applicable [5]. That is why it seems
interesting to calculate the a.m.m. of octet baryons using the amplitudes of processes
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MB — By on the threshold found in the model of algebra of currents. Note that the algebra
current approximation together with PCAC hypothesis in strange particles processes
allow one to describe correctly the experimental data in many cases despite the relatively
large K-meson mass [6].

The sidewise dispersion relations may also prove to be fruitful for the investigation
of weak vertexes of baryon-baryon transitions. This method was used in {7} to find the
axial-vector constant of weak N -> N transition. In the present study we calculate the
constants of “weak magnetism” in baryon-baryon transitions with a violation of strangeness
by means of the sidewise dispersion relations method. The knowledge of the value of the
latter constants may become useful in solving the problem dealing with possible existence
of contribution of the second class currents to the processes of f-decav of hyperons [8].

2. Magnetic moments of baryons.Calculations of absorptive part of amplitude in model of
algebra of currents

Let us consider first the process of transition of virtual baryon B,(J¥ = 1+, (p+1) = W?)
into a meson and a baryon on their mass shells (g2 = u?, k2 = M?2) with the further radia-
tive transition into a baryon of M, mass (Fig. 1).

The general expression for the electromagnetic vertex of virtual baryon is found
in paper [1]. The invariant function K(W?) (further we shall use the notation from paper

&

Fig. 1

[3]) of this expression, which coincides with a.m.m. of baryon at W2 = M, satisfies the
unsubtracted dispersion relation [1]. Following [3]. suppose that the main contribution
to the invariant function K(W?) for W? = M7 is made by the pre-threshold region of
energies and of all possible two-particles intermediate states (Fig. 1), the once with the mini-
mum summary mass dominate. Then we may confine ourselves to the contribution in the
intermediate state of baryon with J¥ = 1+ and of pscudoscalar meson only, and if we
approximate the vertex of B —> BM transition (B — is a virtual baryon) with the BBM-
-coupling constant, then

A(M2+u)2 )
w = KM = - aw> 2KV 0
n W?—M;}
(M2+p)?

where A is the cutofl.
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Taking into account the said assumptions, we find the imaginary part [3]:

1
MM, g*
5 [ dx Sp {@(p)J u(kya(k)igysi®}, ©)

-1

Im K(W?) =

where M,, M, are the masses of final and intermediate baryons, ¢* is an absolute value
of 3-impulse of meson in the c.m.s., vf) is a projection operator determined in [1], g is
the constant of strong interactions in the BBM-vertex, x is the cosine of scattering angle
in the c.m.s.

As it has been mentioned in the introduction the algebra current approximation
may prove to be a satisfactory approximation of MB — By amplitude at threshold energy
region. In the chosen kinematical situation (threshold region) the resonance contributions

Mlq) Mig) By (p)
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Fig. 2

are suppressed and the amplitude of the precess under consideration is determined by the
contribution of pole diagrams with pseudovector BBM-interaction and the contact diagram
(Fig. 2). After the simple though bulky calculation we find

g’ q*
Im K, ,(W?) = 2 — F,,(W?),
m K, ,(W?) 8 W 12(W)
F (W) = e,E;(W*)+ e, Ej(W*)+ p, K (W) + po K, (W?). 3

Analytic expressions for E; ,(W?) and K, ,(W?) are given in the Appendix L

Due to the fact that we considered real masses of baryons, we can hardly expect
coincidence of the value of the a.m.m. of baryons determined by the method described
above with the predictions of SU(3)-symmetry.

First, let us find out what new information we can get from the approximation mention-
ed above as compared with the similar calculations in Born’s model [3]. Let us consider
a case when the masses of baryons are equal M, = M, = M. On the threshold
{W = M+pu) the intermediate state baryon-pseudoscalar meson possesses the negative
P-parity and, therefore, on emitting an electric dipole y-quantum, it can turn into a ba-
ryon with a positive parity. The radiation of El y-quantum in the process B(J" = 1*)
— B'(J¥ = {*)+7y is possible only in the case when one of the baryons is off the mass
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shell, and the amplitude of such a transition is proportional to a “power of virtuality”
of the baryon, i.e. in lowest order to the value W = M ~ u [9]. According to what was
previously mentioned it is possible to represent the amplitude of El transition B — By
as follows

M(B — By) ~ z\% M(MB — By). )

The main contribution in (4) when pu — 0 gives the singular terms in amplitude
M(MB —> By). It is known that the predictions of both pseudoscalar and pseudovector
Born approximation for MB — By amplitude differ only in terms of a.m.m. baryons [10].
The latter have a small coefficient p/M in MB — By amplitude at threshold. For the
singular terms at W — M in M(MB — By) the predictions of both approximations are
identical. Therefore, both approximations under consideration must differ only in terms
of the order u/M, and the difference becomes apparent only in the multipliers in (3) which
are proportional to a.m.m. of baryons.

Making an expansion of value E; ,(W?), K, ,(W?) determined in the model of
algebra of currents and in Born’s approximation® [3] in the small parameter « = u/M
we find

a. Born’s approximation  b. Model of algebra of currents

E} = 1-3a+0(2) E, =1-3a+0(z)
E' = —1+}a+0() E, = —1+}a+0()
a
Ki=K;=— 5 T0@ K= —}a+0(®)
K2 ~ 0((1),

where 0(x) are the values of second order and higher by u/M.

Similarly to [3] we determine the value F(W?) for each given intermediate state at
the threshold point W? = WZ. Taking into consideration all possible (allowed by the
conservations laws) intermediate meson-baryon states, and assuming that SU(3) predictions
are valid for the constants g(B, BM), we find for the a.m.m. of octet baryons the following
system of linear equations

9
# =B+ Y, Ayu;, i=1+09, ®
i=1

where coefficients B;, 4;; are the function of A and of parameter f which determines the
ratio of fld(f+d = 1) coupling constants in SU(3)-symmetry.

For nucleons, neglecting the contribution of strange particles, (5) is reduced to the
system of two linear equations to determine the a.m.m. of proton and neutron with coeffi-
cients depending only upon the magaitude of cutoff A. The Table gives the values of
the calculated a.m.m. of nucleons according to the magnitude of the cutoff A (for comparison
similar results calculated in Born’s approximation are given). As it is clearly seen from

! There is a number of misprints in the formulae of [3].
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TABLE I

Born Model Current algebra model

A ‘ tp ta “p ta
2.6 g 1.35 ~1.61 1.35 —1.69
2.7 1.40 —1.67 1.40 —1.75
2.8 1.45 —1.72 1.44 —1.81
29 1.51 —1.80 1.51 —1.89
3.0 | 1.56 -1.85 1.56 ~1.95

the Table 1, the suggested model improves, in a way, the predictions for the a.m.m. of

neutron.

Because of the fact that the main contribution in the dispersion integral for the a.m.m.
of nucleons is made by the wN-state, one can hardly expect the other possible intermediate
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states to change substantially the found data of the a.m.m. That is why it would be quite
natural to assume A = 3.0 (see Table I) when solving the complete system of equa-
tions (5).

The results of the calculations are given in Fig. 3. The calculations show that the
a.m.m. of proton and neutron in the considered model depends not much upon the param-
eter f. In the region f~ 0.4 the a. m. m. of neutron approximates to its experimental
value. Thus for f= 0.4 we find: p, = 1.61 (1.57); u, = —1.93 (—1.78); p, = —0.76
(—0.68); uso = 0.11(0.15); uz- = —0.82(—0.75); 3, = 1.04(1.05); uz- = —0.55(~—-0.55);
ptzo = —1.10 (—1.08); ps, = 0.99 (1.14), where figures in parenthesis represent
the results of calculation with Born’s amplitude for the same cutoff A. As it is clearly
seen from calculated data the a. m. m.’s of A and X'+ hyperons are not far from their
experimental values pu$® = (—0.8010.07) eh/2m e, ps® = (2.0240.58) eh/2mc [11],
the obtained data for a.m.m.’s of E—-and X—-hyperons also correspond to the measure-
ments that have been recently performed: py- = —(2.240.8) [12], pz- = (0.1+2.1) [13]
and —1 < pp- < 0 [14], uz = (—0.8940.47) eh/2mzc [15]. The data given above
show that the calculated values of a.m.m. 2~ and Z—-hyperons differ radicaily from
SU(3)-symmetry predictions. The existing experimental data [12-15] are in agreement
with our values.

3. Constants of weak magnetism in baryon-baryon transitions

The formalism of the sidewise dispersion relations method can be applied for the
investigation of form factors of weak baryon-baryon transitions. The vector part of the
vertex of weak baryon-baryon transition B, — B, (B is a virtual baryon) can be represented
as the sum of the following six summonds:

i i : Tl l 13+i+nz
u(p)FZ(p, p+1D) = i(p) {yufl+ —ifg — T fF " } 1

ml"l‘nlz 3 "ll+m2 2m1
ol ! ~ﬁ—i+ml
+il Cify ey —
(») {?pfl f5 My +m, 3 m1+m2} 2my

where f}: = ff(lz, W?) are the form factors of the transition, m,,, are masses of the initial
(final) baryons. The form factor f;(W?) goes to the ‘“weak magnetism” constant
in the limit of W —m,, [* —0.

Let us suppose (similarly to the electromagnetic transition), that for /> = 0 the form
factor f5 (0, W2) = f,(W?) satisfies the unsubtracted dispersion relation in W2. Then
according to the assumptions made in the previous section, the ‘“‘weak magnetism” con-
stant may be represented as (I), the imaginary part may have the expression coinciding
with (2) (substituting everywhere M, — m; the mass of the intermediate baryon). The
projection operator vf,z) for the investigated vertex has the form

m ~ ~ N
VO 1P =0) = 2 5 (P 1 +my) {al,~y, I} u(p), (6)
2

B 2Wr—m
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where

_ AW?—mym,+m?)
W24 2mmy+m?

In the limit /? = 0 the form factor f; does not make a contribution in Tm f5(W2)
and the method under consideration permits us to obtain linear relations connecting
the constants f; and f, of different transitions of octet baryons. We shall consider the
transitions with the violation of strangeness. Further, we shall take the values f; predicted
by Cabibbo’s model when calculating the values f,. Therefore, taking into accout the
results obtained in the previous paragraph, Born’s model may serve quite applicable
for the calculation of the amplitude of process MB — BV, near the threshold (V) is
a weak vector current).

In Born’s approximation for Im f5(W?2) of weak B, — B, transition we find the
following expression:

my+m, q* g(B,, BsM) JZg(Bs, B3M)

Im f{17 (W) = — - 2) A5
m f; U or W Wz—mz t Wi_ [fi(s —» 2)4]

§(B,, B,M) " 2g(B;, B,M)
+f2(S 2)A ]+ W[fl(Z’;—»u)A +f2(3—->u)A ]+ -—Wf I)A}

(M

where mj; is the mass of intermediate baryon, mi,, m, are the masses of the pole baryons
in the s and u channels. Matrix element of the u; — u, weak transition was chosen as
follows:

MY IMPY> = fu(®) (q+ P+ frg )L,

The analytic expressins for functions 4, ,(W?) and u(W'?), t(W?) are given in Appendix 2.
In the limit W — m, p — 0 we get the following expression for the “weak magnetism”
constant

AW?2 )
Im f{7 2w
£33 = lim J dw? — f22 (-2—) = Kg(B,, BsM)
W—om We—m
w2

x {(—3) [g(B,, BsM)fi(s = 2)—g(B,, B,M)f,(3 = u)]+1 g(Bs, BoM)fy (i — D},
where

K = —In Aj167*

As it is generally known there exist four independent weak transitions with a change
of strangeness at the level of isotopic symmetry between the octet baryons

A-pV,, X -V, E -4V, E°->I'V,] .
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Taking into consideration all possible (allowed by the conservation laws) meson-baryon
intermediate states (Fig. 1) and using for the constants of weak and strong interactions
the predictions of SU(3)-symmetry, one can easily find, in the present limit, the following
expressions for the ‘““weak magnetism™ constants of the considered transitions:

K - 2 =0 + 2
fo(4 = p) =%{—f1(2 =)@ =D +f1(E" = 7)) @f -4/ +14)

+fu(—8f +4f—5)},
fAE7 = n) = J2£,(2° > p) = K{fs(Z™ = n) (=32f>+32f—9)+4f,(E° - Z¥) (f-1)

+hdA—f) A +2f)3-2+9f—10f*]},

- K -
JoET » A = NG {/iZ7 > n) (56*~ 52/~ 1)~ f,(E® » £*) (1 +2f)°

+fu(20f 2 —16f+5)},
f2E° > 2% = J2f(E7 - 2% = K{fi(Z™ - n) (—8f>+12f—4)
+fU(E° > ZN) (42 +4f =9+ fu[(L—f) @f—D/3+f+2]}, ®
where the constant f;, has the following unitary structure
(P|V§IPY = fy(P;P}—P}P})

P is an octet of pseudoscalar mesons.
According to the expectations in the present limit the derived ‘““weak magnetism”
constants (8) satisfy the correlations predicted by SU(3)-symmetry:

1 -0 + ~—
fid > p) = — = {2(E° - I)—f(27 > m)},
Vo

1
J6

While calculating in the case of experimental masses of baryons and mesons, we also
assume that the unitary symmetry predictions are valid for the strong interaction constants.

It is easy to find expressions for constants f;(B; — B,) and f,, using Cabibbo’s model
predictions. Finally, we obtain for the “‘weak magnetism” constants a system of four linear
equations with coefficients representing the functions of parameters f and A.

As one can see from Fig. 4, in the range of parameter f~ 0.2+0.6 (with A = 3.0)
the signs of the “weak magnetism” constants of B-decays of hyperons agree with the
predictions of Cabibbo’s model but their magnitudes differ. Thus for f = 0.4 we find:
(A —p) = —0.091 (—0.52); £o,(2- —>n) = 0.146 (0.48); /»(Z—— A) = —0.090 (—0.036);
f2)E° — Z*) = 0.228 (0.89), where figures in parenthesis represent the values of constants
derived in Cabibbo’s model.

FE7 o M) = = {fo1(E° > Z)=-2/(Z7 > n)}.
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Hence the calculated values of constants depend logarithmically upon the unknown
generally cutoff parameter A, the analysis of ratios of the constants which are not sensitive
to the change of parameter A in large limits presents a great interest.

Fig. 5 shows the ratios of the “weak magnetism” constants of the hyperon f-decays
as functions of the parameter f and also similar values derived in Cabibbo’s model (taking

Mg & 13 (Br—=8,)
20

0.2+

o1+
~0 +
HLZT-»-F7)

frlE =)

f, (2——>n)

Fig. 4 Fig. §

Fig. 5. Ry = filA = p)fa(Z~ > n), Ry = fr(E~ - D[fo(Z~ > n), Rs = fo(E® - ZH)[fo(X~ — n); dia-
grams aj(8;) are corresponding predictions of Cabibbo’s model taking into account corrections for the
mass differences of baryons

into consideration (f) and without taking into account () the difference of masses of the
hyperons). In the region f = 0.2+0.3 the considered values (except the value of ratio
Jo(E- — A)fo.(Z~ — n)) do not contradict Cabibbo’s model predictions (both with taking
into account the mentioned corrections and without them).

Thus, the analysis has shown that the sidewise dispersion relations in the limits of
plausible assumptions permit one to obtain reasonable predictions for the electromagnetic
and weak characteristics of baryons. The calculated values of a.m.m.’s of baryons and *“weak
magnetism’ constants are found to be in disagreement with unitary symmetry predictions.
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In conclusion, the author expresses a deep gratitude to Professor M. Rekalo for
numerous useful discussions of a number of problems that have been tackled in the
present study.

APPENDIX 1
Analytic expressions for the functions have the form
M
2 1 - —
E(W?) = Wi (2M,B™ —M, A5 +p’M,},
2M

S N
B0 = yinyai =)

{A* A7 (M A5 —~2M,B)—u*B™Af +pu*A747 A"

+ Ut AT 4 2WH(=M,LAT AT — i’ B +14)0(2)},
K (W = —[24"W2A7 ] {=2M A; B~ + M,A; AT + > M,A[},
Ky(W?) = —[247 A7(A7 =i YW1 {M AT (A7) + MI47(4;)
—2M,W2A[ A5 +4M M3A{ A5 —4M3A; B~ +4M347(B™)?
—4M M, 4% A; B™ 4+ 12 [2W MM, + BT (2QW?4™ —2M5M |
+uPM )] +4AW* AT MIQ(2),

where

A% = M,+M,, A, = W>+M;,,

z+1
B* = W*+M,M,, 0O(z) = ézln( 1) -1,
7

z = (A5 —pHNAZ — D) = 4wy,
in the limit g =0, W= M, = M,:

E = ~E, =1, K, =K,=0.

APPENDIX 2

Analytic expressions for functions A7%(W?) at the threshold point W = W,
= m3+pu are as follows:
1. s-channel

A = —aRj+2R3,
+ 2

Ay —u + _
—;—Vi:z - (BZSA12+,nSA2 )9

i

$ = my(A; +405,45)—
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2

2 = m3(2By~ ’nZAls)+ (’”2315 2WZA1s),

245 B, )
s A+S_. s A+ 2 -
2 A;—s {ms 1 ZWZ( 3 —H )J

2. u-channel

-

+ 2

A+“‘ 2 A —
—myA A5+ —%VVZIL{—muA;—mZALA;,+ ;*Vyzli(zszz-{-mlA;)},

u
1=
+

R; = my[m 4, +m)—mms—A; |+ - 2W2 W(A13--2mu)

+my[ —my(45,+ 435+ A3 -1},

4 24, L7 A3 —,u My, (AT — )
= msym, —pu)—mymy—mym .
2 AT 3 2W Wz 3 —H 23 imy

3u

3. t-channel
A = aAl| + A4,

A = ~

AT +7 o A5 -
zwzﬂ {— ;W [mlAz +2??12W]+m3(A2 +2mlm2)}

. AT -
Ay = my(B,+msA)— —;y?—(WZAB—J—m2m3A13+mz;12).

Functions #(W?) and ¢(W?) are as follows:

: - A3 - -
U(W2) = %{A;uABu'— 4;‘-”75‘— AZ}?

Where m,, m,, ms, m,, m, are the masses of initial, final, intermediate and pole (in s- and

u-channels) baryons.
The following designations are introduced:

+
45 = Wzimf, B;; = Wz-i_-m,-mj,

 _
Aivi = ’niinlj.
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