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ON THE CLASSICAL LIMIT OF QUANTUM MECHANICS
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The classical limit of nonrelativistic quantum mechanics in the Wigner phase-space
formalism is discussed. It appears that the limit of an eigenstate is represented by a singular
probability density concentrated and constant on subsets of phase space corresponding to
the given value of the observable. The limit of eigenstates of energy is investigated as an
example.

1. Introduction

The purpose of this paper is to discuss the ““classical limit” of nonrelativistic quantum
mechanics using the Wigner phase-space representation. This formalism, developed by
Wigner [1], Groenewold [2] and Moyal [3, 4] seems to be best-suited for comparing
quantum and classical theories. In spite of this, to the knowledge of the author, no more
extensive discussion of this kind can be found in the literature, and more complicated
methods are preferred {(e.g. Maslov [5]).

We shall restrict our attention to the theory of one spinless particle moving in one
dimension. Generalization to more translational degrees of freedom should be simple,
Spin may be included in a way described in [6-8].

We start with reminding some basic facts from the Wigner phase-space formalism,
to fix the conventions and notation. The operators acting in the Hilbert space of states
will be distinguished by using bold-faced type throughout the paper. Other letters denote
c-numbers.

The operator

. .
4.7 = f dudw exp [—,’; (u(q—q)+w(p—p))]
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enables us to define the Wigner representation of any operator 4 (including the density

operator):
A(g, p) = Tr (4 - 4(q, p))

. h }
::hjdud”<q-—§ Alq+—¥>. )

1
A= n J‘dqdpd(q, p)A(q, p)

Conversely,

and for the quantum average we have

»

1
Tr(e- A) = ﬂ dgdpA(g, D)f(a, ), )

where ¢ is the density operator and f(q, p) its Wigner representation. The normalization
condition 1is

1
N qudpf(q, p =1 3

The Groenewold rule provides us with the phase representation C(g, p) of the product
C = A - B of two operators 4 and B:

ih
C(q, p) = A(q, p) exp (3 A) B(q, p), )

where

the arrows indicating the direction in which the derivatives operate. Thus the von Neumann
evolution equation reads

0 2 . [h
=f(q, p. 1) = H(q, p) 7-sin (— A>f(q, P 1) (5)
ot h 2

H(g, p) is the Wigner representation of the Hamiltonian.

2. Observables

Consider a classical dynamical quantity of the form:

Afa, p) = Y amd'p"
nm>=0
According to the standard procedure of quantization the corresponding quantum observ-
able is

A = z 0 anm(,n - pm)orcb

n,mz
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where the bracket indicates some specific rule of ordering of the noncommuting operators ¢
and p. With the aid of a finite number of commutations we transform (¢" - p™),.4 into
the Weyl-ordered product (¢" - p™w [9]:

(@" " Pora = (§" " P")w+h (remaining terms),

the (remaining terms) being a polynomial in #.
The Wigner representation of (¢" - p™)w is ¢" - p™, <0

A(q’ p) = Acl(qa P)+ h (Other terms)

and

lim A(g, plh) = A4, p).

50
Similar results were obtained by A.S. Schwartz [10]. From (4} we see that in the limit
h — 0 the Groenewold product becomes the ordinary product 4 - B. Thus the algebra
of quantum observables having classical counterparts tends to the ‘‘classical algebra of
observables”.

3. Classical limit of a quantum state

We almost always specify the state of a system giving the expansion of its density
operator in terms of eigenvectors of an observable (some commuting observables). Therefore
we shall restrict our considerations to eigenstates of observables which possess classical
limit.

Let |¥) be an eigenvector of such an observable 4 to an eigenvalue a. Thus

f‘!’ = <‘Ilid(qsp)lq]> :f(Q»Pﬁh, a)'

Before performing the limit i — 0 we must determine the dependence of a on h.
For a taking on discrete values we may define two “‘classical limits” in a natural way:
(a) we fix the number # of the eigenvalue a,(h):

o1
fum,n(Q» P) = lim an(‘h p‘h, an(h))’
£—0

1 o :
the factor n is due to our normalization convention (3),

(b) h > 0 and n — o0 so that a,(h) tends to a given number a:

Sima@. P = lim — fi(q. plh, a, (1),
k—>0,n—>x h

The limit phase density in (a) may be interpreted as a macroscopic (classical scale measuring

devices) description of a microscopic (low quantum numbers) quantum state. Case (b)

explains the “quantum nature” of a classical state — the way in which quantum mechanics

transforms into classical (statistical) mechanics in the region of applicability of the latter.



If the spectrum of a is continuous there is only one natural definition of the limit

1
flim,a(qa p) = lim 'R fa(q’ Plh)

%—0,a=const h
Note that we normalize the eigenstates in the following way

ald'y = h-dla—a) (©6)

4. Examples

For eigenstates of the position operator

f4q.p.h) = hé(g—x)

and as we should expect we get in the limit a classical ensembie of particles with fixed
position and arbitrary momentum. For the #-th energy eigenstate of harmonic oscillator [4]

2H 4H
fn(q’ P!h) == ’)(—‘ 1)” €Xp (— 'f;—c—o-) Ln (%) R

L,(x) is the Laguerre polynomial and H(g, p) = H,(q, p) is the representation of the
Hamiltonian.

Limit in the case (a): taking the Fourier transform of f,, performing the limit and trans-
forming the result back into the phase space we obtain

.fiim,n(q’ p) = 6(4)5(17)

(limit in the sense of Schwartz distributions) — the particle resting at the minimum of
the potential.

1
Limit in the case (b): let E = nhw = const. The Laplace transform of " Jf, with respect

to — is
E

2w ol s "rs o\t
TG

The limit n - oo and inverse transform give

flim,E(q’ p) = w(s(H(qa P)-E)

— the microcanonical ensemble for the classical oscillator. Now consider energy eigen-
states in a potential well with infinitely high walls at ¢ = 0 and ¢ = d.
In case (a) we easily calculate using (1) that

nng

2 ,
S 2) = 0@ d—a) s’ (—d—) 50,

8(x) is the unit step function.
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The particle rests but the distribution in space exhibits traces of the “quantum origin”.

1
In case (b) let E,(h) - S p5. From (1) and Riemann-Lebesgue lemma
m

1
Siim,po(@> P) = 24 0(q)0(d — q) (6(p— po) + (P + Po))

-— again a microcanonical ensemble.

. ¢qo+1ipo
Finally for the coherent states |z), z = ——— f.(q, p) is Gaussian in g, p and

\21(‘

Siim(@> P) = (g —q0)0(p—po)- N

5. General properties of the limit density

1
In this section we assume that the limit of n f(g, p) exists and all the limiting procedures

make sense. We list some properties of the limit density f;.(q, p):
1) according to (3) fi;, is normalized to ! with respect to the measure dgdp,
2) fiim is real and positive definite

- <ZIaIZ> = qudpf (q: P45 P) = fim(dos Po)-

We used here (2) and (7),
3) if f represents a pure state we have

ZfCXp( )f_ zf'

In the limit & — 0 we obtain (f;;u(gq, p))* = oo if only fi;.(g. p) # 0. Thus the limit of
1

]—f for a pure state should be a singular distribution. Note that for mixed states this need
)

not be true — for the quantum canonical ensemble we get in the limit the classical canonical

phase density {11,
4) Let A be an observable which possesses classical limit and A|¥) = a|¥}. The
real and imaginary parts of the eigenequation give:

h
Alg, p)COS( ) fe(a, p) = -l—a(h)fw(q, P

2 . [h 1
A(q, p) 7 Sml 5 A ;fw(q, p) =0.
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In the limit & —» 0
Acl(qs p)flim(qs P) = (liH:) a(h))flim(qs p)a
ﬁ—?

{Acb flim} = 0:

here { ,} denotes the Poisson bracket.

If a, = lim a(h) exists the first equation tells us that f;,, is a distribution with support
#0
contained in the set

{(g,p) : 4u(q, p) = ao}. (®)
For a sufficiently regular function A4, this set consists of isolated points, two-dimensional
sets and curves. In the former two cases the second equation vanishes. For curves the
Poisson bracket {4, f;m} 1S simply the derivative of f};,, along the curve. Thus, if the
gradient of 4, does not vanish, f;,(g, p) should be constant on the curve (as a distribution).
So

Jim(@, P) = 3 ¢;6(Ac(a, P)—ao) ©)

where J; is the Dirac delta function restricted to the j-th connected component of the
set (8).

6. Eigenstates of the Hamiltonian, discrete spectrum, case {a)

Now we shall show that for the Hamiltonian of the form
1 2
H=—p"+V(q),
2m

the limit of an eigenstate from the discrete spectrum is the classical state of rest at the
point where V(g) has the absolute minimum.

We shall assume the following properties of V(g):

1) V¥ is differentiable up to the third order,

2) V¥ has only one absolute minimum at the point g = 0,

3) V(@) =0 and V"7(0) > 0, ,

4) liminf ¥(¢) > 0 but for some N, V(q)g" is bounded for g — + 0.

g—-too
By means of the substitutions

- - 1
x=vVhz, ) = M), eh) =+ Eh),
we transform the equation

2m dx*

hZ dZ
(— + V(x)) P, (x|h) = E,(h)¥,(x|h) (10)
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into

1 42
(_ —2_111‘ E'z +% V,,(O)ZZ+ U(Z’ h)) ¢n(z’ h) = ,,(h)qS,,(z, h) (11)

As h = 0, U(z, h) tends to 0 in the strong sense on a dense subspace of L(R) (e.g. Schwartz
test functions). We shall see that ¢, tends to ¢2(z) — the sotution of (11) for U(z, h) = 0.

From the variational max—min characterization of eigenvalues we obtain ¢,(h) < ¢,(0).
Comparing ¢,(h) with the eigenvalues a,(h) of (I11) with the potential replaced by the
following function:

W(z,h) = 1 V"(0)z2* —C for |z| < h ™ %q,
_% -Vr/(o)h"‘1/4a2_c for |Z| > h—l/Ba’ (12)

C=3h"%a sup |V (x),

(—a,a)

the choice of a depends on the value of lim inf ¥, we get o, () < g,(h). The difference
W(z; h)—4V "(0)z* converges to 0 as U does. The values of «,(h) increase as o — 0 and
so ¢,(0) is a stable point of the spectrum of (11) with (12) (Kato (11}, Ch. VIII § 1). Thus
&,(0) is also a stable point with respect to ¢,(h). With the help of theorems on the generalized
strong convergence from [11] we conclude that

16,(h)> {bu(h)] o 1¢2> <bnl  (strong limit).

From (1) we have

1 1
= , plh) = ——, | did —i(tg+sp)
b S, pih) an? J se

0

{¢,lexp (i Vv h (tz —is £>> {pa> — 6(q)0(p) (limit of distributions).

Generalization to minima of higher order is trivial. The result is in accordance with (9) for
E(h) >0 as h » 0.

7. Eigenstates of the Hamiltonian, discrete spectrum, case (b)

We choose a fixed value of energy E in the region of discrete spectrum of (10). To
the assumptions 1) and 4) concerning ¥(g) from the preceding section we add further
restrictions that there are only two classical turning points for the energy E and the first
derivative of ¥(g) must not be equal to 0 in the neighbourhoods of the turning points.
We may use instead of ¥,(x/h) its WKBJ approximant (for detailed evaluations cf. [12]).



In the ‘“‘classical region” it has the form

a dy >-1/2 1
Fano) = i) (4 | L) s
e ) ““)( J Vo=V Va7

J2m . n
XCOS( W | Va—vodv+ 7 )
a1

where g; = ¢i(2,(h)) are the turning points for the energy w«,(h)).
i=1,2

a,() is the smaller value of energy fulfilling the Bohr-Sommerfeld condition and
greater than E, a,(h) is a normalization constant and a, — 1 as i - 0. Now we calculate

the limit of
* hu hu
Ywkpn | X— 5 Ywkp,n| X+ 5 @(x)dx,

@ being a test function, v € (u,, u,).

Let us examine the intervals (g,(E) ~¢, ¢,(E) +¢) (g(E) —¢, 9,(E)+¢) and the remaining
“classical” and “‘nonclassical” regions separately. In the “nonclassical” regions the limit
is 0 uniformly in ». In the *“classical” domain we get due to the Riemann-Lebesgue lemma

q2(E) q2(E)~¢

d -t cos (v2mu VE—V(x)
(;2 J _—v,_) 1 J‘ S _u = () @(xydx
VE=V(y) VE-V(x)
a:1(E)
also uniformly in . The contribution from the ¢ — neighbourhoods is of the order /e,

the evaluation is independent of u;, u,. Thus from (1) we obtain
q2(E)

91

1 dy ~1
flim,E(qa P) = i ( J‘ — ) 5(Hcl(q9 p)—E),
v2m 2 \/E—V(y)

q1

as we should expect from (9).
Similar analysis was performed by Schipper [12], but his conclusions were slightly

different.

8. Eigenstates of the Hamiltonian, continuous spectrum

We again use the WKBJ approximation for the wave function. The results differ
in the cases of one and no turning points. For the latter case

Xx

i '\//Ei_n /
exp| + W VE=V(y)dy
4]

VE—V(x)

m

4
Pike,e(x) = a(h, E) \/E
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with
<T12:WB,EPP$:VKB,E'> ~ |a|*h$(E—E') for E =~ E,
so {6) laj—»1 for h -0

By similar arguments as in Section 7 we obtain

m 6(p £~/ 2m(E~V(q))
2 VE-vg

Moreover, we easily check that for '¥) = ¢, ¥ >+c,|¥ ) we get

Jim e, p) = \/

o \/772 ey 28(p+N2m(E— V) + le,*8(p—2m(E— V)
lim,¥ 2 V/E _ V(q)

that is the degeneracy of the eigenstate remains in the classical limit, but the interference
vanishes.
For one turning point there is no degeneracy and the result is

flim,E =+ o(H.(q, p)—E).

9. The equation of motion

To complete our considerations let us remind that the quantum equation of motion (5)
transforms in the limit into the classical Liouville equation [3].

10. Concluding remarks

The main result of our discussion is a manifest confirmation of the view that classical
counterparts of quantum states are ensembles of the classical statistical mechanics rather
that “states” of “‘pure” classical mechanics. In particular the limit of quantum eigenstates
are “‘classical eigenstates” — singular probability densities on the phase space confined
to sets of constant values of the observable and constant on them. This result is obvious:
the “limit state”, if exists, must be fully determined by the same set of parameters —
quantum numbers — as the quantum state. In spite of this the ‘““pure mechanical” picture
of the classical limit seems to be more popular, although the presented above point of
view is nearly as old as quantum mechanics itself. It was proposed by Van Vleck [13]
in 1928. Van Vleck’s considerations based on the approximation of the phase of the
wave function by a complete integral of the Hamilton-Jacobi equation (cf. also [14]).
Recently Stawianowski [15] discussed the analogies between quantum and classical
mechanics using the language of differential geometry and reached the same conclusions.

The author wishes to express his gratitude to Dr A. Burzynski for suggesting him the
theme and many enlightening discussions.
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