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ON THE QUANTIZATON OF YANG-MILLS
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An approach to the quantization problem of gauge fields, based on the external source
method combined with the quantum dynamical equation is presented.

1. Introduction

After the discovery of the Feynman rules for Yang-Mills and gravitational fields by
Feynman himself [1] the quantization problem of these fields have been solved by many
authors using quite different techniques, adequate to different points of departure [2-7].

The present paper is aimed at clarifying the connection between the methods of above
references by presenting an approach to the quantization problem of gauge fields, based
on the external source method combined with the DeWitt [8] quantum dynamical equa-
tion.

2. Yang-Mills field

We shall use indices from the beginning of the Greek alphabet to denote components
in isotopic spaces and indices from the middle of the Greek alphabet to denote compo-
nents in the space-time.

As in the electrodynamics we consider the following Lagrangian

= —% F(X)F,,(x)+145(x)J5(x). 2.1
Here
Fi(x) = 0,A%(x)— 0,45(x)+fc"* AYx)A5(x),

A% — Yang-Mills field, C**# — group structure constants.
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From (2.1) it follows that

5s -
) = —iJy(x). (2.2)

In equation (2.2) § is the action of Yang-Mills field and is equal to
S = — [ FL(0F5(x)dx = [ Lyy(x)dx.
Because of the invariance of Ly, under arbitrary gauge transformations
A(x) > AYx)—f TV ub (),
Vii(x) = 60, +fc P Al(x), (2.3)

the corresponding variation of § must vanish

oS oS
88 = | ——— 6A%(x)dx = f " [ Bx)VE(x dx = 0.
fﬁA:(x) WX)dx = f | U (x)V,(x) A X
The arbitrariness of functions #%(x) yields
V2 g
X mmn
" 5 (2.4)

The identity (2.4) and the equation (2.2) impose the following condition on the ex-
ternal source

VIR x)Ji(x) = 0. (2.5)

Thus the external source J;(x) must depend on the 4, field; this condition cannot
be satisfied by arbitrary external source; this difficulty of external source method has been
pointed out by DeWitt. To avoid this difficulty DeWitt has used the free background
field in his wellknown paper [2].

Here we propose a new approach which allows us to overcome the mentioned dif-
ficulty on one hand, and on the other to clarify the connection between the approaches of
other authors. For this purpose we introduce a new field K*(x) which in the case of Lorentz
gauge

2, A4i(x) = 0
enters the Lagrangian under the following form
= =} FL(0)F,(x) +iA(x)J5(x)+id, Ay (x)K*(x). (2.6)

The scalar field K*(x) will generate the ghost particle as it will be shown in the fol-
lowing. In some sense the scalar field plays the role of the Lagrange multiplier used in [6],
but the approach presented here differs from the approach of [6]. We shall construct
K?*(x) so that the condition (2.5) will be satisfied by any arbitrary external source J(x).
We shall limit ourselves from now on to the Lorentz gauge case, but it is easy to deal
analogously with other cases.



From the Lagrangian (2.6) we obtain
88 o 8483y
Ji(x)+ Kf(y)dy ) =0. 2.7
5Aa() (ﬂ() J‘AvaAz() (.})_ ( )
Our next step is to convert this equation into the quantum dynamical equation [8]
that has the form

T(Y) =

where T denotes chronological product and Y is obtained from the Lh.s. of (2.7) by re-
placing all classical fields 4;(x) by quantized ones A(x). Taking the vacuum mean value
of this equation we obtain

CO|T(Y)[0Y> = 0.

This equation can be shown to be equivalent to the following functional differential
equation for the vacuum-to-vacuum amplitude Z

3S 8 8A4%y) )
+iJH(x) + Ki(y Z = 0. 2.8
(M“() 1”’L”5Aﬁ<x) D) s @9
T8I,
In (2.8) the symbol :...: indicates that in the expression represented by three points, the

external source J;; and the field 4 are to be ordered so that J; appears before 4j. The
ordering of J; and A4}, is necessary because of the commutation relation [§/3/5(x), 5l =
= 0,50,,0(x ).
We take for Z the form suggested by DeWitl in [8]
zZ= jF[A] HATIRAE TT dAs(x), 2.9
X, f,%
where X is the hypersurface J,4, = 0.

By acting Vﬁ"‘(x) on (2.8) and using (2.4) we have as a result the important equation
serving to define K*(x)

VIR, s Z = —ViHx):0,K¥(x):],, | s Z. (2.10)
Y s,

Note that (2.10) is analogous to equation (4.39) in Mandelstam’s paper [4] for the
path independent Green functions.

One can verify that the solution of (2.10) has the following form (for details of proof
see Appendix B in [4]):

8, KXX): = =10, [ VEWING(x, y)dy: ~feP70,67(x, V)= (2.11)
where G™(x, y) is the Green function defined by
VE(x)8,G7(x, ¥) = 5*8(x— ). (2.12)
Inserting (2.11) into (2.8) we obtain the functional equation for Z
oS cqz s :8 3 a; srafva B H
+1Ju_l:au V;’: (y)Jv(Y)G i(x’ }’)dy:_’fc /UuG )’(x’ y)ly=x Z = 0.
5A: Aaz“ - 5}/511“
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The expression in the parentheses in the Lh.s. of the preceding equation is by itself an
equation for A when one sets it equal to zero and impose on A4; the gauge condition
0”45 = 0. Thus the third term of this expression may be omitted as it is a pure divergence.
As a result we have for Z

+iJ5(x) — ifc78,G"(x, y), < ) Z=0. (2.13)

A%, 5/50%,

5
(i

Substituting (2.9) for Z in (2.13) we obtain after an integration by parts the following equa-
tion for determining F on X:

(381645 ~ifc70,G*Y(x, y)|x=y—S/SADF = 0. (2.14)

It is straightforward to verify the identity

5
SE Sp In (5, +fc*7486,07") = —fc**'9,GP(x, y)iy=x (2.15)
u

by expanding the left and right sides as a perturbation series in f [7].
Inserting (2.15) into (2.14) we can easily integrate (2.14) and using (2.9) we obtain
the result

Z = jexp [S+iSpIn (S, +fc* 480,07 ) +i [ Jid%dx] [] dA%x).  (2.16)

Xsfi &
The multiplier
exp (i Sp In (8, +fc*" 4%, 017 1)

is the wellknown Faddeev-Popov measure 4;, describing the interaction of Yang-
-Mills fields 4} with ghost scalar field, which appears only in closed loops of Feynman
diagrams.

3. Gravitational field

We shall take for the gravitational field the Lagrangian

L=%./-gg"R,+i/—gg"J, =16"R,+ig"J,, @G.1)

where g = det g**, R,, — curvature tensor, J,, — external source.
From (2.1) we obtain

oS ,
—— = —iJ

ogh’ w S =1[g"R,dx. (3.2)

The infinitesimal gauge transformation of g*” is of the form

" — " —ud,g" + §"0u" + 60 u" — 3B . G-3)



The invariance of S under (3.3) leads to the following identity analogous to (2.4)

o 88 0 34
69‘” — ( . )
where V§'(x) = g"'0,—2040,8%" —26%6"0,.
Thus (3.4) and (3.2) impose
Vi'du = 0. (3.5)

This condition cannot be satisfied by an arbitrary external source. Thus instead of (3.1)
we have to take the following Lagrangian:

£ = } ¢ (DR (x)+1g"(x)] (%) + 10,8 (x)K (x). (3.6)

The Lagrangian (3.6) is written for the case of harmonic gauge condition 4,g"" = 0.
From the Lagrangian (3.6) we obtain

i
59,W( 9 ( wkX)+ J——- g%i—% g(y)dy) =0. X))

The functional differential equation for Z in the case of gravitational field is

3s d og™(y) .
(5 00 +iJ(X)+i: jé_yl 56" () K (y)dy l)g o Z=0. (3.8)
The form of Z is analogous to (2.9)
Z = [F[g"]e/ e [] dg"(x). (3.9)
Pt

where the hypersurface Z is determined by J,6** = 0. To find K (x) we have the following
equation, obtained by acting V4'(x) on (3.8)

9 g™y
ay* 8g"(x)
After some algebra (which can be performed following the steps of Appendix B in [4])
we can verify that the solution of (3.10) is

Vﬁ"(x).]uv(x)j:gﬂv - 6/51“,2 = — Vifv(x): J Kﬂ(y)dy: lggv . ‘51/5_,“‘,2. (3.10)

2 86°(y) . oo 9 6g°(2) .
P WKQ(Y)CIY' fV (y)Jac(.V)[ 2 56" (x) ]d}
d 9g°%(z)
-0, Ja 7 5g‘”(x) G(z, y)dz|,-,, (3.11)
where G(x, y) is defined by
73 ’ a 5 ‘m(y) N3
V¥(x) J = 5%()5 G(y, 2)dy = 085(x—2). (3.12)
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Omitting, as in the Yang-Mills case, a pure divergence in the equation obtained by inserting
(3.8) into (3.11), we have then

3S o g
Ll ()—id; | 2 28
g™ (x) 0z% 8g"'(x)

An integration by parts allows us to deduce the equation determining F[g*"] on X

G(z, y)dzix=y) Z=0. (3.13)

gy > 8/6 v

5 5
PR —i0,0,G(x, Y)|x=p— 55" F=0. (3.14a)

ny

Let us write g"" in the form

guv — r]“v—}-fth"v,
where #** is the Minkowskian metric. Equation (3.14a) then acquires the form

S . 5\
é‘h—uv _lj'auOvG(x’ y)]x=y— w F = 0 (314b)

Using the identity (see Appendix)

d
Sh* Sp In (1 +4h%6,0,1° ") = 40,0,G(x, V)l,=x (3.15)
)

we can easily integrate (3.14b) and obtain finally
Z = [exp[S—iSpln(1+h%0,0,00” ") +i [ ¢"J,,dx] ] dg"(x). (3.16)
X AR

The functional Z contains the wellknown Faddeev-Popov measure
Vy = exp (i Sp In (1+1h%0,0,017 1)

describing the interaction of gravitational field #** with ghost vector field.

Thus, basing on the external source method combined with the DeWitt quantum
dynamical equation we have presented a new approach to the problem of quantization
of the Yang-Mills and gravitational fields. This approach may be immediately applied
to the quantization of any gauge field. The main advantage of this approach is the de-
veloping of a procedure of quantization in which the connection between the methods
used by Fradkin-Tyutin, DeWitt, Mandelstam and Faddeev-Popov is made transparent.

APPENDIX

In this appendix we shall establish the validity of (3.15). From (3.12) using the harmonic
gauge condition we can obtain

6770,0,G(x—y) = (O+2h""9,0)G(x~y) = 5(x—).
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Expanding G{x—y) as a perturbation series in 2 we have
G(x—y)
= };(— " § O (x—x)h""0,,0,,07 (%) —x5) ... k™9, 9, O '(x,—y)dx, .7 dx,.
Then
20,6,6(x, y=x = — ;( 2" §6,6,07 x—x)h™*0,,0, 07 (x; —x;) ..
v b @, O Nxp g —X)dxy L odx, . (AD)

Let us consider now

d
h‘”( )Sp In(L+4h®3,0,07")

[ (_1) jh"ma I i € TR I

heg, 8, 017 (x,—x)dxy ... dx, = — Z(—l)"‘"f6,‘6vD”’(x—xl)lz”""

6h’”(x)

hon- tn-1a a. _1();"_1 x)dxl odx Xp—1- (A2)

G 1" Anw 1

% &y, c,‘D_l(xl—.\'z)

Comparing (Al) and (A2) we obtain (3.15).
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