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A new quasipotential two-particle theory is presented for the description of the spinless
relativistic hydrogen atom. Recoil effects are fully taken into account, but are shown to
have no effect on the fine structure of the spectrum. For an infinitesimal value of the fine-
structure constant & the theory has O(4) symmetry. Apart from the recoil effects the energy
levels in this case coincide with those of the Dirac atom with maximum spin value. For
a nonvanishing value of « the O(4) symmetry is broken in the same order in « in which the
Lamb-shift occurs. The Klein paradox probably does not exist.

1. Introduction

In a recent paper [1] a Lorentz invariant Lippmann-Schwinger equation was intro-
duced for the description of particle production in high energy scattering. In addition to
choosing a special form for the phenomenological potential describing the transitions
between different many particle states, the main difference with other unitarization schemes
consisted of a special choice for the Green’s function of the Lippmann-Schwinger equation.
Our scattering amplitude M, (P) for the transition from the state « to the state f was taken
to satisfy the equation

Mﬂa(P) = Vﬂa— j VﬂyLy(P)Mya(P)’ (1)

where
s’ , ,
L(P)= | —o"(P,—P")
s’ —s
0

- m (1—v}) (1 — )3, —0). )

* On 13 June 1975 a preliminary version of this work was presented to the 15th Cracow Summerschool
in Zakopane.
** Postal address: Sorbonnelaan 4, Utrecht, The Netherlands.
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The symbol | indicates an invariant sum over intermediate states, such that the particles
7
are on their mass shells. The intermediate energy and momentum can be off-shell, but

subject to the condition that the total velocity of the intermediate state is conserved.
The homogeneous equation derived from Eq. (1) describes bound systems and can
be cast into the form

2 2 2 3
(Poc —Mb)¢a+ 7)7 V:zyLaygby =0, (3)
* 7
where
L:;az = (1 - l’?) (1 _U:)és(z;y_ga) (4)
and
B . B 5
v, = — = l)a = =D
T P, P (5)

is an arbitrary, but fixed velocity of the whole system. Eq. (3) is the eigenvalue equation
for the mass M, of the bound state and must be such that the wave function can be normal-
ized, which means that

2
[16,P1, < oo. ©)
From Eq. (2) follows that Lja and therefore also this norm is invariant under Lorentz

transformations. For a system of two spiniess particles 1 and 2 with masses m and M re-
spectively, Eq. (3) takes the form

(p1+ ) —MPP(py, p2)+

2
+ o jdakl d4k25(kf e 1712)0(k10)5(k§ —MZ)H(kZO)
(pi+p2)
x V(pipyikiky) (1 —1’2)253(;-,_;)4’(,(1: ky) =0, D
with
.k +Ek ~  Pi+p -
v, = — L2 and v, = AR v fixed. ®)
kio+kzo Piot+ P20

So far Eq. (7) very much resembles a quasipotential equation, for bound states of two par-
ticles about which the literature can be traced, e. g. from Ref. [2]. Yaes [3] has even shown
that by modifying the propagator in the Kadyshevsky equation, one can obtain an infinite
set of quasipotential equations which satisfy both Lorentz covariance and elastic uni-
tarity. The difference with Eq. (7) arises, however, when choosing a Lorentz covariant
form for the potential V(p,p, kik,). An obvious choice would be to take for ¥ some real
function of the square of the four-momentum transfer. Since, however, the three-momen-
tum is not conserved in the intermediate states, the quantities 7, = (p,—k;)?> and
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t,=(p,—k,)* are not equal and it is not clear which expression to take for the momentum
transfer. Instead one can show by using the conservation of the total velocity (cf. Eq. (8)),
that the four-vectors

ki+k, P1t+ps
—= and —==,
NI Vs

are equal. This implies that

2 . 2
?s\/ﬁ(i’é—k1_> =\/s?<p—2_—£i). ©)
N Vs s

Whith this variable the symmetry between the particles 1 and 2 has been restored and

since, moreover, in the nonrelativistic limit s, s’ — (m+ M)? the variables ¢,,1, and 7

become equal, we will consider the interaction potential V(f) to be a function of 7 only [4].

An additional symmetric dependence on s and s’ could be included, but for the present

this will not be done. In analogy with the Bethe-Salpeter equation it would be very in-

structive to show in which sense our Eq. (7) could in an approximate way be derived from

field theory, so that we would have a systematic way of calculating the potential V(7).

This, however, we have not succeeded to do. Eq. (7) therefore, must be considered as

a phenomenological equation, the proof of which is in the comparison with experiment.

One extra condition we can impose on the potential ¥(f) is the requirement that in

the non-relativistic limit s, s’ — (m+ M)? and in the reference frame for which v, = 0,

Eq. (7) reduces to the Schrodinger equation with a given form of the non-relativistic
potential

with s = (k,+k,)> and s = (p,+p,)>°

- 1 e -
Vi = e " "Vr(rdr. 10
~r(9) (2n)3 J Ne(7) (10)
Here q = k—% and k and %' are the relative momenta
P miZ_Mil and ¥ = mkz_Ml—él )
m+M m+M

By keeping only the lowest order terms in k2 and k’2 it can indeed be shown that the
above mentioned requirement is satisfied, provided

V(t) = 4mM Vig(q) an

in the limit k2, k'2 < Mm.
The remaining part of this paper is devoted to the study of Eq. (7), especially for
the case of Coulombic interaction, for which the potential, satisfying Eq. (11), is taken as

~ 2amM
V(i) = —5—, (12)
ot

with o = e? equal to the fine structure constant. Although this potential has a form
which is different from the usual Coulomb interaction — because of the variable f — it
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must be kept in mind that it also appears in an equation which differs from the usual
equations in so far that not the momentum, but the velocity is conserved. The best justifi-
cation, however, for our assumption that the Coulomb interaction is properly described
by the potential of Eq. (12), is the close agreement of the spectrum with that obtained
from the Dirac equation. This will be explained in the next two sections.

2. Expansion in partial waves and the non-relativistic limit

A first reduction of Eq. (7) can be obtained by introducing instead of k, the four
integration variables v, (given by Eq. (8)) and k3. These integrations can be performed
using four of the five é-functions. The fifth 5-function is used to remove k | as an integration
variable. Of the three remaining variables one is an azimuthal angle, just giving a factor
2r, while for the last two variables we choose s” and f of Eq. (9). When keeping track of
the Jacobians of these transformations we obtain the following form for the eigenvalue
problem

(s—Mbo(s, 0)+ —— 2\/2 j ds’ \/ jdt Vs, 1) = 0, (13)
(m+M)2
with
A= AMs,m? M?) =s?+m*+ M*—2sm?*—2sM?*—2m>*M?2. 49

The integration limits 7, depend on s and s’ and are given by t, = t5+7, with

—ss'+(s+5) (m* + M¥) —(M?* - m?)?} 15)

to = 1{
02\/g

and

P
‘E:JZL r ? (16)

SS

where A’ is obtained from A by replacing s with s'. From (15) and (16) it can be shown
that

t_<t. <0, (17

The condition (6) for the wave function to be normalizable becomes

j ds' \/s' jdthb(s N2 < co. (18)

(m+M)2
(Tt
()P, (—;"0) 19

Expanding in partial waves

¢(S,s ;) =
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and defining

t+

Vi(s, s') = 2r2(AA) 14 Jd;V(;)Pl(t ;t"), (20)

-

the equations (13) and (18) become, respectively

e8]

) 1 AN\ o
(= MDA+ j ds (7) Vs, )(s) = 0 @)
(m+M)2
and
*/s—fl lp(s)|*ds’ < oo. (22)
(m+M)2

If we now specialize the interaction and take for V() the Coulomb potential of Eq. (12),

formula (20) gives
, 8amM to
Vz(S,S)=—WQ1 -7/ (23)

where Q, is the Legendre function of the second kind. In order to simplify the equations
we introduce dimensionless variables as follows

, _ s—(m+M)* 2 S =(m+M)? ,  (m+M)’—M;

=IO R w2 T T T
va(m+ M)>? va?(m+M)* b va’(m+ M)? 24

where now x; is the eigenvalue that must be found. As a measure for the mass ratio we
have taken

mM m{M
v = = N
(m+M)»?*  (1+m/M)?

(25)

while the reduced mass will be indicated by p = . The formula for the (positive)

m+M
binding energy E, = (m+ M)— M,, when written with these new dimensionless quantities,
now becomes

Ey = (m+M) [1—+1—ve?x7], (26)
or in expanded form
E, = 3 uo[x7 +} vo’xp + 3 %t xf 4. ] 1))

The terms containing v are called recoil terms. They disappear when the proton is held
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fixed. The eigenvalue equation from which x7 must be determined now becomes

<+

2 t
2 2 0
+ = e | X'd - — ).
() = s f x'dx Q,( T> $i(x) (28)
4]
In terms of the new variables the argument of the Q,-function is
to [V ¥
——=i\7+—)=1 29)
T y ¥
with
x d , x' 30)
an y
V1+1aPx? Vi+iaix? (

The condition for the normalizability reads
x*V1 +l o’
12
s x){“dx < 0.

f — !«25,( ) 3D

0
We observe that Eq. (28) does not contain v consequently and also x 7 is independent of
this parameter. This implies that, at least for the Coulomb interaction, all recoil effects
indeed occur only in those terms of Eq. (27) which were indicated as such. For a Yukawa

interaction with “‘exchange mass™ x the only change in Eq. (28) consists of an additional
2
. . . K

term to the argument of the Qy-function. This term is equal to — and depends explicitly
T

on v. Recoil effects therefore occur already in the first term of Eq. (27) for the binding
energy.

The non-relativistic limit of Eq. (28) is obtained by neglecting 2%x? and «2x'2? with
respect to unity. If we then introduce the angular variables ¥ and v by

v u
X = xutg 3 and x' = x,tg B 32)

the eigenvalue equation becomes

1 ; —cosvcos u
X, 1) = = le [ ] ¢(u)du. (33)
0

sin ¢ sin u
This equation has been solved by Eriksen [5] in the following way. He introduces a new set

of orthonormal (Gegenbauer) functions

(k+v)k!
2al(k+2v)

o) = 2°I(v) [ ] (sin )" Cy(cos ), EL))
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which satisfy

k3

[ )i w)du = 8y, (35)

0

and for which he proves the formula

o0

1Q l1—cosvcosu B 1 . . y
'] sinvsinu - mck () H(u). (36)

k=0

Substituting this representation of the Q,-function into Eq. (33) immediately shows that
the normalized eigenfunctions are given by

Gau) = C;CH(“)- (37
The corresponding eigenvalues are

1
X, = — with n=k+I1+1=I[+1, [+2,...
n

Substituted into Eq. (27) and keeping only the first term in this non-relativistic limit,
gives the usual values for the spectrum of the hydrogen atom. This is no surprise, but only
‘a check on the calculations, since we knew already that in this limit our equation had to
reduce to the Schrodinger equation.

3. O(4) symmetry and its breaking
By taking as new variables (cf. Eq. (30))

’

z=%ay and 2z =lay

’

and defining

()
Z I e 3
Z!( ) (1_22)2 ( 8)
the eigenvalue equation (28) can be written as
1
ﬁ ’ z Z’ 1 7
@z = — | 2| 3| = + =) | u=)dzZ, (39)
nz z z
0
with
1 o?x? a
2 4 b
z5 = —————5 and = 40
T 1—La¥x? 4 1—%a’x} (40)
The condition of Eq. (31) becomes
1
§ 22— 22)ix(2)?dz < 0. (41)

0o
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In the next section we will return to Eq. (39), but here we first investigate the possible O(4)
symmetry of our equation.

For that purpose we introduce the variables
2z 2z 2z,

' and p,=—. 42)

] p

Using the formula

1 2n
LN 5 Q,[ (—— + A)] Yo, YO &) 3)
lp—p'? pp p P

im

one can show from Eq. (39) that the function x(p) = y(p) Y,, (6, ¢) satisfies the equation
- x(p) »
(p*+p)x(p) = J = : “4

where | indicates that the integration is to be performed over the volume of a three di-
*

mensional sphere with radius 2/f. We now apply a stereographic projection onto the

2

Po

)

©}

Nj<

Fig. 1. Stereographic projection

surface of a four dimensional sphere with radius p,, as first used by Fock [6]. In Figure 1
it is shown how the polar coordinates (p, 0, ¢) of f) are transformed into the variables
(v, 6, @) of the four dimensional vector b with length p,. Doing the same for _pf’ =(p,0,¢)
going to b = (u, 0', ¢") it can be shown [7] that the equation for the function (v, 0, ¢)
= (p*+p{)? 2(p) becomes

2n

0,
(v, 0, @) = Jsm udu f51n 0'de’ J d¢’ ’P(I'g % , (45)

o 0 0
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where

u =2arctg_i. (46)
“0

For o — 0 the parameter i — mand po — X,, so that Eq. (45) transforms into the manifestly
O(4)-symmetric equation for the non-relativistic hydrogen atom (see e. g. Eq. (4.14) of
Ref. [7]). In our equation the O(4)-symmetry is slightly broken, because #@ is almost, but not
quite equal to n: a small hole is left near the south pole of the four dimensional globe.
If, however, in a first approximation we ignore this hole and thereby restore the symmetry,
the spectrum is given by

1
Po=— withn=1+1,1+42,.. 47)
n

From Egs (40) and (42) this implies

, 2 \/Mo? o
Xp = ;2 [1i 1— ‘;{2—] = x,(£). (48)

The solution x,(~) is the one which in the limit o — 0 corresponds to the non-relativistic
hydrogen atom. When substituted into Eq. (27) for the binding energy and when the recoil

terms are omitted, we obtain
az

This is exactly equal to the corresponding value for the binding energy of the Dirac atom
with the largest possible value of the spin, i. e., with j = n—1. It is hoped, of course, that
when we succeed in extending this theory to include the spin of the electron, the degeneracy
of the levels given by Eq. (49) will be lifted to give the fine structure of the Dirac atom,
but that the energy of the state with / = # —% will still be given by the above expression.

The other solution x,(+) gives rise to states with a mass M, just above M —m. When
we write M, = M—m+E, we find with Eq. (24) that to lowest order in «

1
E, =~} . (50)
n

This is the usual spectrum reflected with respect to the proton mass M. We want to empha-
size that this second solution has arisen by treating our original equations in an approxi-
mate way and it is by no means clear that such a second solution also exists for the exact
equation (39). Actually, when substituting x,(+) into the expression (40) for 8 we find
for small «

(51



Like in the Dirac equation it is very plausible that there is no solution to Eq. (39) for such
a large effective coupling. In this case we do not have to worry about the interpretation
of these states. If, nevertheless, they do exist we have to accept the Klein paradox [8]
and explain it away by using the idea of the Dirac sea. In the next section the reason
given for the absence of a second solution will be made somewhat more rigorous.

4. Perturbative solution

We cast Eq. (39) into still another form by introducing the variables ¢ and # as follows

v , u
= otg—- and z =zotg3 (52)
and defining
w(v) = 2(z* +20)1(2)- (53)
The integral equation then becomes
1 —cosvcosu
— pi(w)du = Ay(v), (54)
sinusinu
where
sinu
A=—, (55)
o

If the eigenvalues & and the eigenfunctions (%) have been found, subject to the normaliza-
tion condition, which now reads

J(tgzg —tg? %) cos? —Z—[wl(u)|2du < o0, (56)
0

then the value of xZ can be found via equations (40) and (46). Expressed in terms of
¢ = m —1{l we obtain

2
A=— and xj= —(l—cose). (57)
a

The non-relativistic limit Eq. (33) is recovered by writing ¢ = a xp® and taking « — 0.
Before applying perturbation theory in the small parameter ¢ we change Eq. (54)

into a matrix equation by using Eriksen’s formula Eq. (36). Provided a summation and

integration may be interchanged it is straightforward to show that the quantity

u

1

Xt
NS

ck+ Y(u)yy(u)du (58)
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must satisfy the equation

k+l+] E M X, = X}, (59)

where the matrix M’ is given by

! (-p**

Y w)ek Y(u)du. (60)
/(k+l+ 1) (k’+l+1)

Once the eigenvalue problem (59) has been solved the corresponding wavefunction may
be found from

1 X (o)
(o) = —— (61)
l Jtle1
To lowest order in ¢ we find
PR S (62)
T a k+l+l n’

If this is substituted into the formula for x2 of Eq. (57) we find to the same order x?

= —; , which corresponds to the non-relativistic hydrogen atom.

Neglecting the interaction M' in Eq. (59) gives
sin & 1
g (63)

o n

, 2 a2

Since this is the same as x2(—) of Eq. (48} we conclude that M’ is the term which breaks
the O(4) symmetry.
To first non vanishing order the matrix M’ is given by

and therefore

ML = DLt 3+ (65)
with
Dl = (—DFHK . 242 '\ J(k4+21+ DK 21+ 1)! 66)
T aml+3)  \QI+ D! kK"t '
From this we find
i 1
a2 e —DLe? 34 (67)
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Since ¢ = O(x) we obtain from this x; at least to order «***. We do not bother to give
the resulting formula for the binding energies. Let it be sufficient to remark again that
the recoil terms only depend on the principal quantum number # and that the lifting
of the degeneracy in /, due to the breaking of the original O(4)-symmetry, does not occur
in terms of lower order than a®*3. The Lamb-shift between a P- and S-state with the
same # is in this way calculated to be

_ 1 2 2Dr(:) in— 10‘
AE (P, S) = 1 yx BT S +0@°) |. (68)

2n
With Dy_,,_, = o this becomes
n

4o 2

When this is compared with the result of a simple QED calculation [8, 9],

4s® 1
AEP(P, S) = o ——n (a )2 po?, (70)

1
we observe that our result is too small by a factor In < ) 9. 8. Our theory actually should
O(

not be expected to give the correct value for the Lamb-shift, since the latter is due to the
interaction of the electron with the quantum fluctuations of the electromagnetic field and
these are not included in our quasipotential theory. It must be remarked, however, that
the possibility to obtain a singularity in the binding energy of the type of In 1/a® was
excluded when we started our perturbative calculation. There are actually indications that
the exact function E,(«) for the energy levels is not analytic in « = 0. On physical grounds
one would expect this, since the bound states cease to exist when the sign of « is reversed.
The mathematical indication for the non-analyticity derives from the fact that the kernel
of the integral equation (54) is of the Hilbert-Schmidt type. This is shown as follows.
By making the substitutions

et = tgl, &= tg~v— and ¢ = tgz, )
2 2 2
the square of the Hilbert-Schmidt norm becomes
1 1 —cos u cos 1—cosucosv
= —2 udv
sinusino
(4]

1 déd
- [ e osh ()P (12)

b cosh & cosh y
—t
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This is certainly less than the number obtained by replacing the lower limit by —oo.
With the new variables y = é—5 and ¥’ = £+n and after performing the y’-integration
we obtain in this way

N? 32 Jr‘ 2dy < oo, (73)
which proves the Hilbert-Schmidt type of the integral equation. From this follows that
for real ¢ also the matrix M* of Egs (59) and (60) is Hilbert-Schmidt. If on the other hand
M' is expanded in a power series in &

M= Y &M, (74)

j=21+3

which can be shown to converge for all finite complex values of ¢, it turns out that the
matrices MJ’- are no longer of the Hilbert-Schmidt type. This means that, when restricting
oneself to a finite number of terms in the expansion of Eq. (74), results may be obtained
which do not exist when the full matrix is taken into account. If in particular we only
take the first term in Eq. (74) we obtain the matrix of Eq. (65), which according to Eq. (66)
is separable. It is then easy to show that this M J‘ for j = 27+ 3 is not bounded and therefore
not even compact. We therefore cannot expect to obtain the exact eigenvalues by first
approximating M' in Eq. (74) by a finite number say J terms and then taking the limit
J - oo.

This all goes to show that it is certainly not excluded that in an exact calculation our
expression (69) for the Lamb-shift still has to be multiplied by a singular factor, which
may be of the type In 1/a2. If this is really going to happen we have to face the problem of
how on earth the vacuum fluctuations of the electromagnetic field can be incorporated
in such a simple quasipotential. A possible clue may be found from the argument [10-13]
that a vector potential is required to break the O(4)-symmetry. Since in the present theory
breaking occurs without the explicit occurrence of such a vector potential it may be
included implicitly. In that case the appearance of the Lamb-shift is no longer a great
mystery.

The reason given in the previous section for the probable absence of the Klein para-
dox, i. e.,.of a second solution to the eigenvalue problem, can now be made slightly more
rigorous. This is done by using the fact that the kernel of the integral equation (54) is of
the Hilbert-Schmidt type. The eigenvalues 4,(e) therefore have only one accumulation
point, which is zero. If now we write Eq. (57) as

xg = 2[1+\1—-a /2] (75)

. 4
we see that with n — oo either xj — 0 or x; — —-. The first case corresponds to f — «
%

(cf. Eq. (40)) and for « sufficiently small Eq. (39) probably has a proper solution. In the
second case, however, f — oo and our guess is that Eq. (39) has no solution in that limit.



5. Summary

Many papers have been devoted to the problem of how a relativistic invariant de-
scription of the hydrogen atom can be given in such a way that a) the effects of the recoiling
proton [2] are taking into account, b) the correct Dirac spectrum for the bound states is
obtained, ¢) no Klein paradox and negative energy states occur, d) an approximate O(4)-sym-
metry is apparent [10~-13] and ¢) an extension to other potentials is simple. Yukawa-type
interactions, e. g., should also be treated in a relativistic invariant way, although it has
been claimed [14] that in general these do not allow bound states, when put into the Dirac
equation. Here an effort is made to include ali the above mentioned requirements, by
constructing a new quasi-potential theory, which differs from previous suchtheories [2]
in one important respect. External potentials are functions not of the usual square of the
momentum transfer, but of a new transfer variable 7, which is suggested by the conserva-
tion of the total velocity instead of the total momentum. An obvious form for the Coulomb
interaction in terms of this new variable then leads to a formulation of the eigenvalue
problem, which serves as the basis for a discussion of the problems mentioned above.
Recoil effects on the binding energy, at least for the Coulomb interaction, turn out to
depend only on the principal quantum number and not on the angular momentum, so
that they cannot be found in the fine siructure of the atomic levels. Their effect on the
distance between levels with different values of the principle quantum number is of order a2
in units of Rydbergs and is therefore beyond the present experimental accuracy. In con-
trast with this it is found that for a Yukawa interaction the fine structure degeneracy is
lifted by these recoil effects. So far no relativistic invariant theory existed, which combined
O(4)-symmetry with the correct (Dirac) formula for the energy spectrum. With the present
theory energy levels are obtained which, in the limit where the O(4)-symmetry is not broken,
are given by the Dirac formula for states with the highest possible spin value. In the full
theory this symmetry is slightly broken. The result is that the degeneracy of e. g. the 2§
and 2P levels is lifted and the level shift is comparable to the value of the Lamb-shift as
calculated in quantum electrodynamics. How this result is to be explained on the basis of
quantum electrodynamics, especially when a missing logarithmic singularity can be found,
is a complete mystery. Zero progress in this direction has been made so far. One last
aspect to be mentioned is the probable absence of negative energy states and therefore
the non existence of the Klein paradox. Since it has not yet been possible to give a rigorous
proof of this statement a cautious attitude must be taken. If, however, it turns out to be
true, it will have been shown that a relativistic theory for a finite number of particles is
possible. All further problems connected with locality, causality and crossing symmetry
should then either be solved in this context or relegated to that part of physics where
particle production becomes important, 1. €., to quantum field theory.

The author is indebted to Drs. G. Delen who with great enthusiasm performed some
tedious calculations in perturbation theory.
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