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An exact solution corresponding to a relativistic charged fluid sphere is found. It is
a generalisation of the metric found previously by Banerjee and Banerji for a spherically
symmetric distribution of an electricaily neutral fluid. The behaviour of the model is studied
from the conditions of fit at the boundary with the Reissner Nordstrém metric. It is found
that in some cases the model collapses, while in other cases a bounce occurs at a certain epoch
of an initially contracting model.

1. Introduction

While the isotropic irrotational expansion or contraction of charged incoherent
matter is not permitted in general relativity (De and Raychaudhuri [1]) it is of some interest
to study such motion in the case of a spherically symmetric charged fluid, where the pressure
gradient force is not negligible. There are only a few such exact solutions in the literature
(Faulkes [2], Vaidya and Shah [3], Omote [4]) corresponding to static or nonstatic relativ-
istic charged fluid spheres. In the present paper we give a new exact solution for a charged
perfect fluid sphere undergoing shear free motion with the possibilities of collapse as well
as bounce. This charged case is a generalisation of a previously obtained solution (Banerjee
and Banerji [5]) for a spherically symmetric distribution consisting of an electrically
neutral fluid. The behaviour of the model is not much different from that in the correspond-
ing uncharged case. The matter distribution in this case is also inhomogeneous in the
sense that the density and pressure of the fluid are functions of both the radial co-ordinate
and time. The interesting feature of the metric is that when one of the constants appearing

* Address: Department of Physics, Jadavpur University, Calcutta 700032, India.
** Address: St Anthony’s College, Shillong, Meghalaya, India.

675)



676

in the solution is zero, the charge also vanishes and it reduces to the solution previously
obtained by Banerjee and Banerji. From the conditions of fit with the exterior Reissner-
-Nordstrém metric at the boundary the behaviour of the model with respect to collapse
or bounce is studied.

2. Solutions of the field equations
We consider an isotropic form of the line element
ds? = e'dt* —e“(dr* +r2d0* + r* sin® 0dg?), ¢))

where v, o are functions of » — the radial co-ordinate and ¢ — the time co-ordinate. Since
the fluid is assumed to be perfect

=T =T'=-p, Ti=¢
where we have used co-moving co-ordinates. One can then obtain from the field equations,
considering that the pressure is isotropic, the following relation (see Faulkes)
2

i A(X)R*+ B(x)R?, )

where x = r? and R = e~ /2. A(x), B(x) are arbitrary functions of x. A special solution

of the differential Eq. (2) can be given as
2
/2 = [(_-.-——T”/y ) ~—'—°—‘] 3
y

where T is an arbitrary function of time, y = (1+kr?) and 4, k, a are constants. Again
Ti = 0, which in turn gives e"/? with a suitable time co-ordinate in the form
e Traly @
[(T+afy)*—a]
The matter density o, the pressure p, and the charge density ¢ are then calculated from
the field equations and are given in the form

1 dak  (1—kr?) 28§ S§2 382
8np = — | 4k+ 73 e + 7 s 5)
S S+ (A+kr)| (S+a) (S+a)* (S+9)
382 12k 24ak(S+a)'’? (1—kr?
8TEQ == + oz ( 3 ) ° 2) ? (6)
(S+a) S S (1+kr?)
12akat’? (1 —kr?
4no = aka T ( r) (N

- 8 q+kry
where

S(r, 1) = [(T+afy)*—al. ®)
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It can be seen from solutions (3) and (4) that the explicit form for B(x) in (2) is repre-

272
sented by B(x) = ——— and one can immediately write the total charge ¢(r) up to the co-
y
-moving radius r as (see Faulkes, also Bekenstein [6])
16a%k?ar®
2
= . 9
[0 = iy ©

The constant « can therefore assume only positive values and when o = 0, the solutions (3)
and (4) reduce to those of the corresponding uncharged fluid sphere found earlier by
Banerjee and Banerji. Whereas, when one puts a = 0 the line element reduces to that
of the Robertson-Walker cosmological model and the condition & = 0 leads to the open
model of Einstein-deSitter where space-time becomes spatially flat and spatially infinite
In extent.

3. Boundary conditions for matching with the exterior metric

The interior metric obtained above can be matched with the exterior Reissner-Nord-
strom metric

ds? = (1 =2m[r+e*r)dt* —(1 ~2mfr + &*jr*)~ 1dr* —=¥*(d6* +sin® 0d¢*),  (10)

provided at the moving boundary (r = ry) (Faulkes)

16a*k*ary
,0) =0, Hrg) = ———— = g2 11
p(ro, 1) q°(ro) Atk (11)
and
16a%k*r:  2my; (1 —krd) Sss?
—_4kS2 + 24 0V S, —8ak 2 §(Sg+a)/? = —22 . (12
° ( v re )" k) St = g (12

Again since /2 = §/S, the situation S = 0 corresponds to the turning point in the motion
of the sphere.

Now from (5), (12) and remembering that p = 0 at r = r, one gets immediately for
T = S, = 0 the relation

16a2k*r2  2myd
; O+ yO):‘l (13)

3
0 Fg

25, = — }5 |:2k(SO+2a)+1/2<
So
When k > 0, §; < 0 at the turning point. This shows that S, has a maximum and no
minimum. The charged sphere in this case with an initial outward motion will expand to
a maximum of the proper volume followed by a collapse to a singularity S, = 0 i.e. to
a singular state of infinite density.

A condition necessary but not sufficient for bounce from an initially contracting state
may be given by the negative value of the constant k.



678

4. Case of collapse to zero proper volume
Let a >0, k >0, (1—kr2) > 0. Writing
4k =P, (16a2k2r3 . 2my3> _o. 8ak(1—kr?)

3 3 =
Yo Fo

(1+krd)

where P, Q, R all are positive constants, one can obtain the following relation from the
matching condition (12) at the boundary of the distribution

483
—PSE4+0S,~RSo(So+20)!? = —2— 83 = (14
[¢] Q [} O( o] ) (So+ot) 0 = )
The equality sign holds only at the turning point in the motion (i.e. So = 0) corresponding to

_ (2PQ+R*)+{(2PQ+R*)*—4P*(Q* —«R?)}!/?
B 2P? ‘

0 (15)
It follows from Eq. (14) that the quantity 4 = (2P*S,~2PQ) is always non-positive, and
since from Eq. (15) we have 4 = [R?+ Square root term] the overall non-positive character
of 4 can be guaranteed only by the minus sign before the square root, and this reduces the
ambiguity of sign in Eq. (15), hence we have

(S0)max = 2—11-,3 [(2PQ+R*)—{(2PQ + R*)* —4P*(Q* —aR*)}'?] (16)

and this is greater than zero because Q > Ra? as is evident from the relation (14). There
is thus a collapse to a singularity of zero proper volume. It can now be shown that the matter
density ¢ and the pressure p remain positive in all regions in the interior of the model. The
matter density p turns out to be always greater than zero from Eq. (6). Again differentiating
Eq. (5) with respect to the radial co-ordinate and remembering that S’ is negative in the
present case, one finds that the pressure is a monotonically decreasing function of the
radial co-ordinate r. Again since the pressure vanishes at the boundary, it is greater than
zero everywhere in the interior region of the distribution. In this particular case so long
as S > 0 as it is here, o0 > |o} from (5) and (6).

5. Bouncing models

Let a <0, k <0 and y, = (1—kr2) > 0. The last condition is necessary here for
the regularity of the metric in all regions of the interior.
Now putting

P, = 41k|, a7
16a*k*ry  2my;
0= (M5 + ). .
1+ k|r2
R, = 8la||k| LK) (19)

(1= klrg)’
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the boundary condition (12) gives the relation
PiSo+0Q—Ry(So+2)'* =0 (20
which in turn goes over to the relation
P{SG—(R{~2P,0,)So+(Q{—Rin) = 0. @1

At the turning point in the motion S, = 0 and the equality sign holds in (21). Thus the
turning point corresponds to

1
So = 353 [(R}—2P,0)+{(R}-2P,Q,)* —4P}(QI - Rin)}'"*]. (22)
1

When R} > 2P,Q, and Q, >R,a? both roots are real and positive. In view of (21)
one finds that with a positive sign in (22) the boundary reaches a minimum volume and
bounces back, while the other cas¢ with a negative sign corresponds to the maximum
volume reached by the boundary after which the collapse starts.

When R? > 2P, 0, and Q, < R,a* there can only be bounces of the models. The
physical significance of the relation Q, Z R,a? is that it is equivalent to the relation
00 Z |oy| where g and |0,/ stand for the matter density and the magnitude of the charge
density at the boundary. This result may be easily verified from (6) and (7) applying the
boundary conditions (11) so that

48a%k*r  6myd\ 1 30,
8 = + —_ = 23
o ( v R )ss 53 @
and
12laj |kja'? (1 +]kird Ra'’?
dnlo,! = la] [kia ( |kirg) _ 3% . (24)

Sy (-lkir) * S}

Lastly, we make some remarks on the nature of the physical quantities such as pressure
and density of the fluid in such cases. It is possible to say something definitely only at
the boundary 7 = ro. 04 from (23) is always positive. Further, in view of (5) and (11)
remembering that the pressure vanishes at the boundary one can obtain for the pressure
gradient

30, So (Sp+20) 3R xS; 1

8np'(ry, 1) = — — 25
o) = e S (So+2) 2 2 (25)
It can be written also in the form
’ ! 3
8np'(ro, /S = —— [Q:(So+20)— 2R a(Sp+)'/*]. (26)

2(So+a)S,
Again when Q, > R,a?

[Qi(So+22)— 2R, a(So +®)"/?] = Ry *[(So+a)'/? —a! ], (27
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so that from (26) and (27) it is evident that the ratio p'(r,, 1)/Sy is always positive, which
in view of S5 < 0 gives a negative value of the pressure gradient. On the other hand
when Q, < R,a? [Q,(So+2%)— 2R, (S, +«)*] is less than a positive quantity so that the
ratio p’/S, cannot exceed a certain positive constant. Thus with S; < 0, the latter condition
cannot exclude positive pressure gradient corresponding to internal tensions.
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