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Within the framework of the Jost-Lehmann-Dyson (JLD) representation and the
renormalization-group (RG) equation, it is shown that either the RG technique is not appli-
cable to deep-inelastic phenomena or Regge behaviour and Bjorken scaling for structure
functions do not coexist.

1

In recent years the scaling laws for structure functions of deep-inelastic lepton-hadron
scatterings have challenged theorists to elucidate adequately these new phenomena.
The parton models, based on different assumptions, have provided good fits to experi-
mental data [1]. It is of great importance to consider if these laws can be acceptable within
the framework of the quantum field theory (QFT). Up to now, perhaps, three are two
trends which are more fascinating than others. The first one is concerned with the asymptotic
freedom of gauge fields discovered recently by Politzer [2], and Gross and Wilczek [3].
In particular, the latter two prove that Bjorken scaling, up to logarithmic terms, is possible
only in asymptotically free field theories. The second trend is closely connected with
the pioneering paper of Bogolubov and his co-workers [4]. Starting from the JLD represen-
tation they show that automodel behaviour is compatible with the general principles of
QFT.

In addition to Bjorken scaling, the Regge behaviour [5, 6] for structure functions is
of great interest, too. Especially, De Rujula and his co-workers [6] suggest that maybe
structure functions do not exhibit the desired Regge behaviour.

In this note, combining several results of the general considerations performed for
two-body scattering processes [7-9] we obtain some interesting conclusions specified
for deep-inelastic phenomena.
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2

To begin with, let us consider the deep-inelastic electron-nucleon scattering. Its cross
sections are determined by the Fourier transform of the commutator

| : .
an(q’ P) = 8_717 Z J‘<ps 01 I:Ju (";‘) ’ Jv <“ ;)] |p, G'>equdx

in which J,(x) are the electromagnetic current components, ¢ is 4-momentum of virtual
photon, ¢g? < 0 and |p, ¢) is nucleon state with 4-momentum p of mass M and spin o.
The nucleon state is normalized as follows

<p, alp’, 0"> = 2po(21)*6(p— PV
Following Bogolubov [4], the invariant causal structure functions Fi(g, p) (i = 1, 2) are

introduced

(B
r'r’W,(4q, p),

Fi(g,p) = X/F

FZ(q9 P) = Fl(qa P)" z guuVVuu(q’ p)'
”

From the microcausality and spectral conditions one derives that
I. F(x,p) = [dqe*F{(q,p) =0 for x*<0
1L F(q,p)=0 if —q*/12qp| > L.

The Lorentz covariance of Fi(q, p) (i = 1, 2) enables us to work only on the rest frame
where p = (M, 6). For the sake of simplicity, the index i will be omitted in what follows.
Then it is proved [4] that there exists uniquely determined tempered distribution (A%, Mp)
such that the JLD representation is valid

F(q) = [ e(g0)3[q5—(9— M)’ - 2*T9(4?, Mg)dA’dy.
The support of w(A%, Mp) is contained in the domain

-

fe=loi <1, 2>-Vi-g)}
In reality (42, Mp) depends upon g via o, i.c.,
p(22, Mo) = w(A, Mo).

The asymptotic properties of F(q) are considered respectively in the Regge and Bjorken
regions:
v = 2qp > 4+, g2 fixed,

v =2qp - +00,¢ = —g?vfixed.
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As it was indicated in [8, 9] we have a one-to-one correspondence between the asymptotic
behaviours of structure functions and the conditions imposed on the weight functions.
Namely, one obtains:

1) Regge behaviour F(v, ¢%) = v*(In v)?f(¢?) corresponds to the condition

1 B
w2, kM) ~ k™@*% <ln 7) wr(4*, Mp) (2.1)

as k — +0. (2.1) means that (12, Mp) possesses a singularity at o = 0.
2) The asymptotic form F(v, &) = v*(In Wh(£) corresponds to
P(rA%, Mo) = r(In r)Ppg (4%, My). 2.2)

In the case when o = 0, f = 0 we have exact Bjorken scaling and when o = 0, # # 0,
Bjorken scaling, up to logarithmic term, holds. Remember that (2.1} and (2.2) should be
understood in the sense of the distribution theory, i.e., for arbitrary test functions ¢ (1?)
and ¢,(9) we have, respectively, the limit relations

1 2
-—~—~-~“1—J dA*doe (22, kM 0)g(4*)@,(0) =35> Jdlzdeezwn
k@ (ln —)

k

x (4%, Me)@y(A*)9(0), (2.3)

f dildopw(ri?, Mo)p, (A e, o) ..’L*_iJ di*dpoyg (A%, Mp)p (A @y(0).

(2.4)

1
#(In r)?

Next let us make use of the RG approach to investigate the ultraviolet structure of F(q).
For simplicity, suppose we are dealing with the one-charge case. Let 2, be the renormali-
zation constant of the nucleon wave-function, then the RG equation is established [7] to be

2
(u o +ﬁ(g)—g —2}’(g)> 222, M; g 1) =0, (2.5)

where p2 is the subtraction point, g is the coupling constant,

6In,2’2

Blg) = i’ wg) =+ 4’

og
ou*’
and

A2, M; g, 1?) = | dedoo®@,(0)p(A%v, Mo)g,(0). (2.6)

Note that due to (2.3) and (2.4) the RG equation should not be established directly for the
weight function,
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The dimensional analysis provides
2 M2
W32, M g, %) = x(—z . —%3 g>-
I u
Let us put x = A*/u?, y = M¥p?*; Eq. (2.5) turns out to be

d o 0
(x 5 TV o -pg) — +2?(g)> x(x, y;8) =0. 2.7
X ay og

With the aid of (2.7) the asymptotic behaviour of y(x, y; g) is investigated in the ultra-
violet domain
A2y pt> M
Then the variable y drops out, this implies that y(x, y; g) behaves like
2(x, 15 2) & 2y, 05 8). (2.8)

However, owing to (2.1) the limit relation (2.8) is impossible as long as y(4%, M) possesses
at ¢ = 0 singularity, i.e., Regge behaviour occurs. In the opposite case when (A%, Mg)
is regular at 9 = 0, (2.8) is correct and then Eq. (2.7) is powerful enough to give the
solutions in the ultraviolet region and all that has been found in [7]. For convenience,

TABLE 1
1i1:1 2(T) = go <+ Iy <+ Iy = 00,1 <400 Iy =00, = 00,1, <+
T 400
Lo # 0 const. F27(00) r27@ ) g(ln r)
g =0 o(ln r)
TABLE 11
g = +00 }\Tormal case _ Abnorinal_case B
(@~ —vf(g)2e v & —upg)2g—whig)l2
2@ ~ (o) > 1 (InIn »)*/n (In In r)?/" exp (w(In In )1/
g~ p >0 (In r)v/n (In #)*" exp(w(ln r)1/m
g ~exprimp>1 exp (v(In »)1/7) exple(ln A1/ exp[w exp(Inr)1/™)]
g(@) ~ exp(pe7) oo r* exp (wr®°)
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the corresponding forms for y(A?, Mp) are listed in Tables I and II', We see that exact
Bjorken scaling is possible only when [, < +00 and Bjorken scaling, up to the logarithmic
factor, can occur in several cases.

3

From the foregoing discussions we arrive at the following conclusions:
1. If the existence of Bjorken scaling is not derived from the RG equation, then Regge
behaviour and Bjorken scaling can possibly coexist.
2. If the RG equation is applicable, then Regge behaviour and Bjorken scaling cannot
coexist. And in this case, in contrast with Gross and Wilczek [3], it is indicated that an
exact scaling law as well as a scaling law within possible logarithmic factors is possible
in the RG point of view.

It is obvious that the generalization of classes of deep-inelastic lepton-hadron scattering
processes is straightforward.
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“In Tables I and IT g(r) is the invariant coupling constant fulfilling the equation

~
[+4

~—&(r.5) = f@),20,5) = g:7 = Inr

and Ip, I;, L, are the following quantities:

+ o + o +@®
I = [ dey GGy, I = [ dityEa)—vgw)), I = § drlp@m)—pga) — (-2 (D).
(] 1] o



