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THE PARADOX OF A LORENTZ INVARIANT CURRENT AND
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The classical electromagnetic current can be a Lorentz invariant vector ficld. On the
other hand, the electromagnetic field cannot be a Lorentz invariant field. Therefore, the
field generated by a Lorentz invariant current must have a deviation from the perfect Lorentz
symmetry which is not implicit in the current. It is possible to choose the deviation in such
a way that its existence cannot be detected by means of experiments with classical test
particles.

1. Introduction

All the known ways of quantizing the electromagnetic and the gravitational
potential have —as Strocchi [1] puts it—some unpleasant features. Strocchi shows
that the occurence of the unpleasant features can be proved in the framework
of Wightman’s theory without assuming the spectral condition, the temperedness of
the fields, the uniqueness of the vacuum state, the Fock representation and the positive
definitness of the metric in the Hilbert space. One feels that statements which can be proved
without all those assumptions do not belong really to the field theory but concern something
different. We suggest that this is indeed the case: it is impossibie to have the potential
both transverse and covariant because it is impossible to have a regular unit vector field
tangent to a sphere.

We indicate also two simple cases in which the same phenomenon occurs: nonexis-
tence of Lorentz invariant solutions of the classical Maxwell equations with a Lorentz
invariant current and nonexistence of Lorentz invariant affine connection on the light
cone.
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2. Commutator of two transverse fields

Let
~ 33

1 k KX XX
‘4A(x) (2 )3/7J ko [a}.(,‘)e * +a£(’\)ek_]

where

kx = koxo—klxl—kzxz—ksxa, ko = /(k1)2+(k2)2+(k3)2 ,

be the vector potential.

2 4 2 A

ay k)= Y efkauk), ai(k)= 3 el kal(k),
A=1 A=1
13

where e, e are polarization vectors i.e. unit space-like vectors mutually orthogonal and
orthogonal to k while a (k) and a’(k) are annihilation and creation operators corresponding
to two independent transverse modes of the field. Using the commutation relations

[a(k), al(D)] = 26,,5k°5(k—1)
one finds that

[4:(x), Ag(»)] = iD;p(x =),

where

There is exactly one null vector m(k) such that

2
— Y ey = gig—kmg—kym,;, km=1.
A=1

Hence the commutator of two transverse fields can be written in the form

D;(x) = ga5D(x)+2;A5(x) +0pA;(x)
where

d’k 1
D(x) = -~ J 20 sin (kx) = — 51gn (x°)8(xx)
is the Pauli-Jordan function and

3
Ag(x) = (21)3 Jd k my(k) cos (kx).

One has formally
O4e(x) = 0, 6"Aﬂ(x) = —D(x).
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Differentiating the second equation and substracting the result from the first one we have
P(0yA;—0,4,) = 8,D.

This means that /4 4(x) is a classical vector potential generated by the current jy(x) = 9,D(x).

3. The paradox of a Lorentz invariant current

Here an acute paradox arises. The current is clearly a Lorentz invariant vector field
since it is a gradient of the invariant function D(x). On the other hand, no field generated
by this current can be Lorentz invariant. Indeed, in a Lorentz invariant situation the only
directed quantities are the radius vector x*, the metric tensor g,; and the Levi-Civita symbol
¢*##; it is clearly impossible to form an antisymmetric tensor using only x*, g5 and %%,

We see that there is no Lorentz invariant commutator of two transverse ficlds because
there is no Lorentz invariant solution of the classical Maxwell equations with a Lorentz
invariant source.

The property of Lorentz invariance determines the current-up to a position in space-
-time and a constant factor. Indeed, a Lorentz invariant current must be a gradient of
a Lorentz invariant solution of the wave equation. Any such solution is a linear combination
of D(x) and D,(x) = 1/xx. However, the gradient of 1/xx is clearly a vector while the
electric current is not a vector but a density with the transformation rule

. ) ax°\ ox*t
= S18NY ——F ) —=% .
Jp g axm (’}xﬁ Ja

Hence the most general Lorentz invariant current has the form

Jp(x) = QdzD(x~c)
where
Q= j d3xj0(x)

is the total charge. Physically the Lorentz invariant current is a spherical shell of charge
imploding and exploding with the velocity of light.

4. Solution of the paradox: the deviation from the Lorentz symmetry cannot be detected,
provided the symmetry is broken by a fixed null direction

Let us assume that there exists in Nature a Lorentz invariant current. We know
that the field generated by this current is not Lorentz invariant, but we cannot predict
how the Lorentz symmetry is broken. We can only measure — by means of scattering
of test particles — the field actually produced.

It seems that the paradox of a Lorentz invariant current will be solved if it is impossible
to detect how the Lorentz symmetry is broken.

Let us break the Lorentz symmetry by choosing a preferred null direction a. We need
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this direction to form an outer product with x. By means of the direction a, one can
construct a solution of the Maxwell equations

~f e _
0"Fy, = 0,D,

0,Fp,+0gF, +0,F,5 = 0,

where
|
D(x) = — sign (x?)8(xx),
2n

in the form

1 [5(ax) N d(xx)

Fo(x;a) = — . ](a,lx,.—avxa).

2n| xx lax|
The field F,(x; a) is invariant with respect to the four-parameter group consisting of
all Lorentz transformations which preserve the null direction a. It is impossible to_have
a more symmetric solution since there is no five-parameter subgroup of the Lorentz group
while a Lorentz symmetric solution does not exist.

The field F,,(x; a) has a remarkable property: a classical particle scattered by this
field emerges with unchanged momentum and angular momentum. Hence, it is impossible
to find the symmetry breaking direction «a, at least from measurements involving classical
test particles. This seems to be the solution of the paradox.

Proof is given in the Appendix.

5. Affine geometry of the light-cone

The light-cone xx == 0, x® > 0, where x is the radius vector in the Minkowski space,
is a three-dimenstonal manifold, which carries a metric and a volume induced by the
geometry of the Minkowski space. The metric and the volume are invariants of the Lorentz
group which is therefore the group of metric motions of the light-cone. It is a legitimate
geometric problem to look for an affine connection on the light-cone compatible with
the metric and the volume. But, as [ have shown previously [2, 3], the problem has no
solution if one insists on the Lorentz invariance of the affine connection. The group of
affine geometry of the light-cone turns out to be smaller than the group of metric geometry:
it is the four-parameter group of transformations which preserve a fixed null
direction.

In Cayley’s construction of the Euclidean geometry we descend from the projective
geometry to the metric geometry choosing a preferred conic section; the group of metric
geometry is then the subgroup of the projective group which preserves the preferred
conic section. In the case of the light-cone the order is reversed: we descend from the metric
geometry to the affine geometry choosing a preferred null direction; the group of affine
geometry is then the subgroup of the Lorentz group which preserves the fixed null
direction.
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APPENDIX
We shall find the motion of a particle in the field

d(ax) + (M
xx laxi

Fo(x) = 2|: }(a#xv—avx“), aa = 0.
The particle moves freely everywhere except on the surfaces xx = 0 and ax = 0, where
it receives three consecutive shocks.

The notation is explained in Fig. 1. p = mdx/ds is the initial kinematical (not canon-
ical!) momentum, p, the momentum after the first shock which occurs at x, etc. On the

Xx=0

ax >0 x/

Ax=0)

Fig. 1. Motion of a particle in the field of the Lorentz invariant current j,(x) = 9,D(x). It follows from the
conservation laws that p = p3, x,—x = —2(px)p/pp

segment x,.x; the particle moves with the velocity of light in the direction of a. This strange
behaviour follows from the conservation of angular momentum, as explained below.
The potential of the field F,, has the form

a, X, .

A (x) = —— O(—xx)+ — sign (ax),
lax| XX

where

0 for xx > 0,
O(—xx) =
1 for xx < 0.
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The potential is invariant with respect to the four-parameter group of Lorentz transforma-
tions which preserve the direction of . Using the action principle
~dfm Vdxdx+eddx = 0

one finds easily the corresponding conscrvation laws:

dx, dx,
a't{m T +eA, | x,~{m - +eA, | x, | = const,
ds ds

uvig qu -
& i 7~ +ed, | x,a; = const,
ds

s

It is clear that p, is a lincar combination of p, x and «¢. Assuming that the world line is
continuous across the surface xx = 0 we find from the conservation laws

a .
Py = p+e--— +AX,
ax

where A remains undetermined. It can be determined, however, from the identity p, p, = pp.
In this way we obtain

a ap
P = p+e(~z; ~€ax(e+-p;) X.
Similarly
a ap,
B e T axet )

On the surface ax = 0 a curious phenomenon occurs. The assumption that the world
line is continuous across the surface is inconsistent with the conservation laws. It is a common
point of view that whenever continuity is inconsistent with conservation laws, conservation
laws prevail; this point of view leads e.g. to the hydrodynamical theory of shock waves [4].

Suppose that the particle reaches the surface «x = 0 at x; and leaves it at x’;. The
vector x'; —x, is either space-like or null and then proportional to a. It cannot be space-like,
however, since in this case the particle would move with a velocity exceeding the velocity
of light. Thus it follows from the conservation laws that, for a short period of time, the
particle is dragged along in the direction of a; it may be dragged along forward or backward
in time, depending on the sign of charge.

To calculate the result of the second shock we integrate the equations of motion

dp, dx’

= eF, —
ds e’”ds

over a small interval around the surface ax = 0. We obtain

é{ax)

d(xx
P2y—P1p = Zef (xx)
xXx

(ax,—ax,)dx’ = —2e jd(ax)é(ax) Zu +ea, | —— d(ax).
XX xx
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Both integrals are not well defined. In the first one x, is discontinuous for ax = 0; in
the second one d(xx)/d(ax) is discontinuous for ax = 0. However, xx is continuous for
ax = 0. Therefore the first integral is determined up to a multiple of @, while the second
integral is clearly proportional to a,. Thus we have

Xy .
P2—p1 = —2e — + 44,
X1Xy

where A remains undetermined. It can be determined, however, from the identity
Ppap> = pip;- In this way we obtain

2¢ (pix,—e
Pr=p+ ————a—X; ).
XXy

The jump x’; —x; can be determined from the conservation laws. It turns out that
, a
X] = x,+2e—.
ap;

Thus the motion has been determined completely. It is easy to show that

D =Ps3
and

px
X;—Xx = —2—p.
pp

This means that after three consecutive shocks the particle continues to move on the
original straight line.
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