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ELASTIC SCATTERING AND DISINTEGRATION OF
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A semi-phenomenological analysis of high energy collisions of loosely bound composite
particles suggests introducing form factors whose analytic form depends on the reference
frames privileged by the structure of the wave functions of such particles. Cross-sections
of elastic scattering and disintegration processes of composite particles are discussed as
possible tests of the proposed scheme.

1. Introduction

Attention will be focused on the description of loosely bound composite particles
participating in high energy collisions. In order to avoid several difficulties irrelevant to
our purpose, let us assume that a composite particle C interacts weakly with a point par-
ticle A. This justifies using the first order Born approximation. Let us further assume that
the interaction of 4 with C is known and additive, much like the electromagnetic inter-
action of an electron with light nuclei. The recent SLAC experiment [1] on elastic electron-
-deuteron scattering shows that such a simple model is surprisingly realistic up to very
high momentum transfer t = 6(GeV/c)?, whereas more sofisticated ones, like those based
on meson-exchange currents or other mechanisms which enable one to divide the momentum
transfer approximately equally between two nucleons [2], turned out to be wrong. Thus
the problem consists in properly describing the structure of C for very high energies and
momentum transfers. The main point is that regardiess of the detailed form of the internal
wave functions of C, the corresponding form factors of C become modified when compared
to the standard form factors based on the phenomenology of the Feynman diagrams
applied to non-point particles. This modification originates in the three-dimensional,
or rather canonical symmetry of quantum mechanics as opposed to the four-dimensional
relativistic symmetry of field theory. Let us remember that the relationship between these
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symmetries remains even more vague for particles of finite sizes. Besides a number of
old papers on this subject, e.g. {3}, a great number of contributions have been made, partic-
ularly by Soviet physicists (e.g. [4, 5] and others [6]) currently working in this field. They
generally treat this problem by establishing relativistic analogues of non-relativistic (NR)
wave functions and potentials — called quasi-potentials — which should account for
“instantaneous’ interaction. Since four-dimensional symmetry introduces additional
degrees of freedom (relative times) which are ‘““nonphysical” from the viewpoint of quantum
mechanical symmetry, as is well known from the Bethe-Salpeter equation [7], we must
impose certain constraints to get rid of them. For example, in the case of the two-body
problem, one often makes use of the condition

Px = Px—FEAr =0, (L.

where P = (P,iE) is the total four-momentum, and x = (x, idr) is ihe relative four-
-coordinate of the constitutents. The infinite momentum approximation {8], instead of
(1.1), makes use of the vanishing of the Dirac variable x,. Note that as these constraints
do not represent any boundary condition of covariant equations of motion they restrict
the very space of solutions. It is shown [5] that Eq. (1.1), which favours the cm-system
simultaneity, enables us to regain Schroedinger-like equations, whose solutions are single-
-time functions generalizing in a smooth way the quantum mechanical nonrelativistic
wave functions. Such equations of motion are often called semi-relativistic equations [9],
because they violate the relativistic covariance while preserving the relativistic kinematics.

In this situation one is tempted to ask: Does the distinction between the cm-system and
all others, implied by condition such as Eq. (1.1), and the quantum mechanical symmetry
thus regained involve modification of the standard theory, or does it only provide another
presentation of this theory — a distinction without a difference. It seems that the investi-
gation of high energy collisions of composite particles, i.c. at least a three-body problem,
can throw some light upon this alternative.

Let us assume that the particle C is composed of two scalar and point particles, “1”
and “2”, in the internal ground state y,. The latter must be parametrized by three invariants
independent of the equation of motion which results in y,, such that

Yo = 'Po(xz, ch’ Pg)s (2.1)

where x = x,~x, and P, is the four-momentum of C. Moreover, the variable P.x must
be present between the arguments of y,, because otherwise y, would be a form invariant
function in space-time continuum: o = o(x?). This, however, conflicts with any conceiv-
able picture of the particle, because y, would then remain constant on the hyperbolae
x%2~(4t)* = const., and such a ““shape” of C would remain identical in all reference frames,
thus being free of any relativistic distortion due to the motion of C as a whole. In order to
deal with some definite model of the wave function we resort to quantum mechanical
considerations based on the semi-relativistic equation. For loosely bound C the latter
coincides with the NR Schroedinger equation for the relative space coordinates of “1”
and ““2”, which describes perfectly the real situation.

In papers [10, 11] we have proposed a geometrical framework, which brings to the
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utmost the relativistic symmetry breaking of the semi-relativistic equations, and results in
internal wave functions which do not depend a priori on the relative time variables. Here
the relativization of the description of the system takes place only a posteriori, i.e. on the
level of c-number characteristics of a realized state of this system. The relativistic covariance
does not necessarily hold on the level of g-number equations of motion. The semi-relativistic
equations provide us with a suitable illustration of such a situation. The c-number argument
r of the realized, spherically symmetric state y, of C obtained from the semi-relativistic
equation can be identifield, as a c-number, with the relativistic (c-number) invariant,
i.e. it can be relativized according to the equality

r? = x?—(Px)?/P? = x|, 3.D

where S, is the rest-frame of C. Note that the relativization (3.1) of r? requires P, to be
the c-number four-momentum of C: P? = —m?2, where m, is the rest-mass of C in the
state y,. Consequently, apart from the normalization factor, the relativization of y,
means to replace the absolute distance r between the constituents of C by the invariant
quantity from the right hand side of Eq. (3.1):

vo(r?) = wo[x*+(Px)*[m2]. 4.1

Thus obtained wave function accounts for the internal structure of C in any reference
frame, and it is a particular case of the wave function (2.1). We see that ¢, depends on
the variable P,x, which makes its analytic form dependent on the reference frame; vy,
is not a form invariant function in space-time. The so called static approximation provides
us with a similar prescription for the boost of the wave function [12]. If the z-axis is taken
parallel to the velocity v, of C, then

Yo = Yol X2+ y* +y2(z —rv.41)7], @1

where x = (x, y, z, iAt), and y. = (1 —r?)~"/2 is the Lorentz factor of C. Thus y, accounts
for the Lorentz contraction of C, and remains determined for an arbitrary value of At
as the static shape in S, expressed in the relative coordinates. In momentum language,
Eq. (4.1) means that the fourth component of the relative four-momentum p, of the
constituents of C disappears in S, i.e.

Pcpc = 0, (5.1)

which is an often used constraint strictly connected with the semi-relativistic approach.

In what follows we will use the wave functions defined in (4.1), but, at least the qualita-
tive results we obtain are independent of the detailed structure of p,. The essential point
is that no wave function can ever be a form invariant function in space-time.

For the sake of simplicity we confine ourselves to the spherically symmetric wave
function of C in S,. Nonspherically symmetric functions require a rather involved spin
algebra, although their projection onto the Lorentz space-time (relativization) also remains
a well defined procedure.
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2. Elastic form factors

Let us consider the collision process between 4 and C, which so far have been assumed
to be scalar and point particles. Moreover, we assume that another scalar particle “u”
exchanged between A and C accounts for the “known’” interaction between these particles.
In the assumed first-order Born approximation the corresponding matrix element is
equal to

Sy = 2.82E2E2ERE) ™2 [d*x [ d*yaF(x—y; p)
x exp [i(P,— Py +i(P.—P)y], 1.2)

where g, . are the coupling constants, and E, . and E, . are the initial and final energies
of the corresponding particles — Fig. la.

A A A A
sy Wy
C c C ¢

(a) (b)

Fig. 1. p-exchange graph of (a) point particles A, C, and (b) composite particle C scattered from the
point particle 4

Now let us assume that C becomes an extended particle composed of two scalar
and point particles, “1” and ““2”, of the same masses m in the bound state y,. Denoting
the four coordinates of “1” and “2” by x, ;, and assuming that y, is the ground state of
mass m, = 2m—B(B > 0 is the binding energy of C), one obtains from (4.1)

Vo = po[x*—(PX)’[P}], x =1x,—%;, P}=—ml (2.2)

Let us assume that 4 interacts with C through the same particle ““i” exchanged between 4
and the constituent “2”, while “1”° does not interact directly with 4. This corresponds
with the assumed additivity of the interaction of 4 with C. The generalization of (1.2)
onto C with an internal structure consists in introducing a suitable form factor of C.
Much as in the case of an electron interacting with a nucleon [13)}, and in accordance with
the Feynman diagram from Fig. 1b, the corresponding matrix element takes the following
form

Sfi = 8ugc(2Ea2Ec2E.'z2E;)~1/2 j d4x1 jd4x2 j. d4yAF(x2—y; D)
x exp {i[P(x;+%;)/2+ P,y —Pyx;+x,)[2— Py} F(x, — %), 3.2)

where (x, +x,)/2 means the global centre of gravity coordinate of C, If C tends to a point
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particle then (3.2) must reproduce (1.2). Hence

F(x;—x4) ——> §9(x, - x,). 4.2)

C-*point particle

Both the Feynman diagram from Fig. 1b and the non-local Lagrangian require that
form factor F be a form invariant function in space-time, i.e.

F = F(x?), X =2X,—x,. (5.2)

Otherwise the Lorentz invariance of the laws of motion would be violated. On the other
hand, let us remember that the violation of the covariance of laws of motion does not
involve violation of the covariance of the S-matrix. For example, the semi-relativistic
equation, although violating the covariance, results in an elastic scattering amplitude which
can be parametrized in terms of the momentum invariants, and thus fulfils the requirements
of relativity. The form invariance of F in space-time means that in momentum space, F de-
pends a priori on the momen tumtransfer ¢ only. Thus we encounter the following dilemma:
on one hand the internal structure of Cis described by a form invariant function F(x?),
while on the other — as is known from Section 1 — the internal wave function v, of C
can never be a form invariant function. Thus two functions F and vy, of entirely different
analytic forms, would describe the internal structure of Cin the same space-time continuum.
This conclusion is quite general, i.e. independent of whether one deals with the Bethe-
Salpeter functions [14}, the static approximation wave functions [12], or any others because
none of them is ever form invariant in space-time.

Let us call the form invariant form factors the “hyperbolic (H) type” form factors,
and denote them by Fy, i.e. Fy = Fyu(x?). The consequence of the indefinite space-time
metric is that a priori (that is in the empty space whose symmetry governs covariant laws
of motion) the vicinity of two four-points x; and x, in space and time separately is mean-
ingless. It gains meaning only a posteriori, when e.g. a particle exists in a definite state of
its four-momentum P (P2 = —m?) which distinguishes between different reference frames
by the shape of the representation of P. The only exception is when x; and x, coincide,
for then 5(x) = (2n)~* [ d*p exp (ipx) provides us with the covariant expression of the
form factor of a point particle — cf. Eq. (4.2). This “‘discountinuity” between the coinci-
dence and vicinity of two four-points, alien to Galilean geometry dealing with two invariant
intervals, is the basis of the proposed modification of the form factor structure. As an
example of difficulties characteristic of the H-type form factors let us consider the con-
ventionally defined charge distribution of the nucleon [13]

o) = 2 ’e [ d’qexp (igx")Fu(g” = 1), (Fu(0) = 1), (6.2)

where ¢ is the momentum transfer in the cm-system of an electron colliding with a nucleon,
and r = [x*| is the distance between the bare nucleon and the meson cloud in the same
cm-system. However, if g is to describe the charge distribution of the nucleon, then its
argument r should denote this distance in the rest-frame S, of the nucleon, not in S*.
If, instead of the nucleon, the deuteron were the extended particle C, then the internal
structure of C is relatively well known, and the continuity argument, when going to the
NR limit, requires the form factor of C to behave quite differently from Fy. Following this
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argument, and following quite a general argument compatible with the first one, namely
that for a point particle one should regain its world line in the relative four-coordinate
x —cf. Fig. 2a, b — we assume the form factor F to be proportional to

polx* +(Px)*/me o[ x* +(Px)*Im?]. .2
However, in order to regain the four-dimensional 3-function in the limit of a point particle,
as required by (4.2), we unavoidably must cross the world-line §® (x—v4¢) with a space-

At At

(a) (b)

Fig. 2. Topology of (a} “hyperbolic”, and (b) “eliptic” form factors of C

-like surface or, in other words, we must introduce a time-like vector 1 — cf. Fig. 2b. —
perpendicular to this surface at the cross point. Thus we put the form factor of C in the form

Fg(x) = Nyg[x*+(Pox)’ m]yo[x* +(Px)*m?16(2x), (8.2)
where the normalization factor N ensures that jd“xFE(x) = 1. The general question then
arises, what reality determines 2, as there is no A given a priori. Form factors such as that
defined in (8.2), let us say of “elliptic (E) type”, will be denoted by Fg. In contrast to the
H-type, the E-type form factors must resort somewhat to reality in determining A. Similarly
the time-like vector P_/m,. indicates the distinguished position of the rest-frame of C
through the analytic form of the internal wave function of C which depends on P /m,,
and therefore is not form invariant in space-time. Due to this, one can expect that 1 will
play a similar role for the wave function which describes the relative motion of the colliding
particles 4 and C — cf. Eq. (10.2). Since the localization of 4 influences, through Fg, the
measurable cross sections, a suitable experiment could, in principle, determine 2.

Inserting (7.2) into (3.2) one obtains

Ssi = 2.842m)*RE2E2E2E) ™ *6“ P, + P.— P,~P)A"(t; p)F(t, u, u'),
i
FE(t’ u, u,) =N fd4x exXp [—5 (P,_."‘P;)XJ V’:[x2+(P;x)2/m3]

X po[x* +(Px)*[mZ16(2x), 0.2
t=(P,—P) >0, u=—@AP)m, u = —(APY/m,.
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The variables #, u, v’ are three invariants which parametrize Fy in momentum space.
When C becomes a point particle 1 ceases to play any role, because independentiy of
the localization of A4, Fgl(t, v, ') = 1, as required by {3.2). Thus, as has been said before,
the point particlé does not introduce any modification of the standard Feynman graphs.
Also in the NR limit (¢ —» o) where no room exists for H-type form factors, and each
time-like vector becomes parallel to (0, 0,0, /) in any reference frame, one finds that FE®
depends a priori on ¢t only, much like the H-type form factor in the relativistic case,

FENR)(’) = J\d:’x exp [_21’_ (Pc_Pé)xi] lvyo(xl)ll’ | = (PC'—PC’)Z (9’.2)

Since, within the E-type form factors, we are forced to distinguish between different reference
frames via A, it seems reasonable to suppose that, as the internal wave function yp, of C
distiguishes the rest-frame S, of C, the whole isolated system A4+ C distinguishes its overall
cm-system S*, This is automaticaily realized by the semi-relativistic picture, while the
manifestly covariant amplitude forces us to assume explicitly

A= (P,+P)W, 5= —(P,+P)* = W2 (10.2)
Then
u=u = (s+mi—-mdjQ2m, \/E) =9y Fp = F(1,5), (11.2)

where 7¥ = (1—0¥%)-1/2 is the Lorentz factor of C in the cm-system S* of A+C. The
s-dependence of Fg conflicts with the phenomenology of the Feynman graphs applied to
particles with internal structure, although the quantitative effects are very weak and depend
ont¥in a non-singular way, i.e. Fg(t, s) — Fg(t, o0) remains finite. Moreover, this dependence
on s vanishes in the following particular cases: 1° in the NR limit, as then t¥/c - 0 —
cf. (9.2); 2° for infinitely heavy, external centre C, or more precisely, for \/s/m, — 1,
because then ¢¥ — 0; 3° in the infinite momentum limit, when v¥ = 1 as then one obtains
Fg(t, ), which is well defined according to the non-singular behaviour of Fg on v,
and as such, independent of s.

Besides these three limiting cases, Fg also remains independent of s for Gaussian
wave functions yo ~ exp (—r%20?), when one obtains from (9.2)

%t
FE(t, S) = FE(t) = eXp [—' 16(*1:%;;2-)] . (12.2)

The same shape of Fg is obtained from Gaussian functions by privileging,-e.g. the Breit
system of C, where instead of (10.2) we should take

A= (P,+P)Cm N1+1/am2), u = u(t) = u'(1) = V1+t/dm? . (13.2)

This can be generalized for the case 4°, where Fi depends on 7 only, when one distinguishes
the class of reference frames where v = u(t), and ' = ¥'(¢), e.g. the Breit system of C, or
the lab-system of C, as then

Fg(t, u, u') = Fg(t, u(t), w'(1)) = F(0), (14.2)
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Here the form factor dependence on ¢ only, as required by the Feynman diagram phenomeno-
logy, is realized, but a posteriori, i.e. by privileging some reference frames where the wave
function of C is presented. This does not take place a priori, i.e. without indicating
any reference frame as is the case for H-type form factors. It is remarkable that several
authors, e.g. Gross [15], construct #g(t) in the Breit system, without clearly stating that
this is an arbitrary hypothesis which favours some reference frame, just as in our case
where the overal cm-system becomes distinguished through (10.2). Besides the aforemen-
tioned reasons based on quantum mechanical symmetry, the privileged role of the cm-system
is also supported by considering collisions of two composite particles C and €. Then,
according to Gross, the determination of the corresponding form factors F© (1) and
.9:'@(1‘) should demand two entirely different Breit systems of C and C, respectively,
whereas the cm-system of C+ C is the only one which is symmetric for the whole process.

Apart from the above mentioned dependence of Fg on the localization of 4, there
is a difference between all form factors of the E- and H-types which reveals itself in momen-
tum space as well. One can show that independently of the localization of 4, all E-type form
factors depend on ¢ through a variable such as in Eq. (12.2), namely

T = t)(1+t/n*m?), (15.2)

where n is the number of constituents of C (in our case n = 2). When ¢ — oo, then 7 tends
to a finite value 1., = n*m?Z, hence Fy — neglecting its weak dependence on s — tends
to a finite asymptotic value. The relation (15.2) provides us with a prescription for obtaining
the relativistic form factor Fg from the, let us call it so, static form factor F§ which coincides
with the NR one,

Fg() = [ dx|yo(r)|” exp (igx) = Fg(1),  (t = ¢°). (16.2)

Then, apart from the possible s-dependence of Fy, its t-dependence takes the form

Fg(t) = F%( (17.2)

1+t/n*m? ) '

For the sake of illustration, let us suppose that the electron is an extended particle
of classical radius r, = 1/(137m,), and let the static form factor of the electron be of
the Gaussian form

Fa(t) = exp [—t/(137Tm)*]  (n = 1). (18.2)

According to (17.2) the electron form factor revealed in elastic collisions will be equal to
t/mg

Fe(t) = — e | 19.2

=(t) CXP[ 1372(1+t/mf)] (15:2)

which never falls below the value exp[—1/(137%)] = 1—1/1372 = 1. Thus, because
r, < 1/m,, the internal structure of the electron, if it exists, can never be observed in elastic
collisions, and the electron behaves like a point particle, which is consistent with all ex-
periments.
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On the other hand, for electron-deuteron elastic collisions we have 1 = /(1 +1/16m?),
where m is the nucleon mass, and up to t < 16m? the static (NR) form factor Fy(t) almost
coincides with Fg. This is in agreement with {1] where the elastic cross-section has bcen
measured for ¢ up to 6 (GeV/c)2

Note that the saturation effect of Fg(t) for t — oo is due to the Lorentz contraction
of the particle C. With increasing ¢ the recoil of C increases generating the Lorentz contrac-
tion, which prevents the penetration of C at its proper distances less than 1/nm,. In contrast
to the E-type form factors there is no room for Lorentz contraction or any other relativ-
istic distortion of C within the H-type form factors. The form invariant functions in
space-time, such as Fy, are insensitive to the motion (recoil) of the interacting particles.
Although the nonrelativistic (or static) form factors are always of the E-type, in this (NR)
limit t equals 7, and the absence of the Lorentz contraction makes Fg*(t) analogous to
the relativistic H-type form factors. Large momentum transfers (¢ 2 1,,,,) should then
distinguish between the modification of the cross-sections due to the internal structure of
the colliding particles (Fg), and that due to the interaction between them described by
the H-type form factors (Fj).

3. Disintegration process

Within a simple model similar to that discussed in the previous section let us now
analyse the disintegration of C due to its collision with the point particle 4. Let us start
with the production process of the particles *“1”” and ““2” in the lower vertex of the diagram

A A A A

) 2

(a) (b)

Fig. 3. Disintegration graph of (a) point particle C into “1” and *2”, and (b) composite particle C

in Fig. 3a. In the assumed Born approximation, the corresponding matrix element is
equal to

Sy = 8,82E2E2E2E2E})™"? [ d*x § d*y exp [i(P,— Py —P})x
+i(P,— Po)y]4"(x—y; p), (1.3)
where
Pf = —mf, Pff = —mf, P’12 = P’z2 = —m?.
If the particle C is composed of two scalar and point particles ‘1’ and *“2”, then let the

production of ““1” and “2” mean the disintegration of C. In this case m, = 2m—4m,
4dm > 0 is the binding energy of C. According to this, the amplitude (1.3) will be modified
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by a suitable form factor G. Moreover, let us assume that an interaction takes place between
A and 27, leaving “1”” as a “‘spectator”. This corresponds to the additivity of the inter-
action which works very well in the electromagnetic interaction of an electron with light
nuclei. The matrix element then takes the following form

Sy = 8.8QE2E2ERE2Ey) ™ 2 [ dtx [ d*x, [ d*yaT(xa—y; )

x exp {i[PAx,+x;)[2+P,y—Pix, — Pyx, — P,y]}G(x, —x,). 2.3)
In order to regain (1.3) when C becomes a point particle it is again necessary that
G(x2=%1) gpmimranmas 0 (x2 = xy). (3.3)

C—point particle
If one assumes the Feynman diagram factorization of two vertices — cf. Fig. 3 — and the
spherically symmetric state of C, then the disintegration amplitude in the momentum
representation can depend on the variable (P.—Pj)* only. Consequently, apart from
kinematics of the phase space, this implies the same spherical symmetry of spectators
in the lab-system. However, arguments like these raised by elastic scattering make us
suppose that the response of C can be more involved, and it can violate the factorization
of the Feynman diagram. Smooth transition to the experimentally well established NR
amplitude inclines to make an Ansatz, and to put

G(x) = —(AP)[mek™* 2 yo[x” +(P.x)*[m¢10(Ax),

K% = [ dxypo(x?), 4.3
which, independently of 4, fulfils the condition jd*xG(x) = 1, and in the limit of the point
particle C, G(x) - §*)(x), as required by (3.3). The presence of a so-far arbitrary time-like
unit vector A is unavoidable if one tries to maintain both, the Feynman amplitude (1.3) for
the production of point particles ““1”” and **2” from a point vertex, and the well established
in the NR physics disintegration amplitude expressed by the corresponding NR wave
function y,. Note again that in the NR limit the localization of 4 is irrelevant, because

G(x) > k¥ 2yo(x*)5(41)

independently of A.

Besides arguments similar to those from Section 2 let us mention another one which
also supports the hypothesis of the distinguished role of the overall cm-system i.e. the
localization of 4 as given in (10.2). Suppose namely that 4 represents the source of an
external, hence infinitely heavy field of force. Thus the overal cm-system S* coincides
with the rest-system S, of 4, and the simultaneity of §, = S* is privileged by this external
field being static in S* only. Therefore one can expect that the equal-time wave function
of C in S* will be responsible for the structure of C revealed in the interaction of C with A4.

Inserting (4.3) into (2.3) one obtains the cross-section for the disintegration of C in
the following form

d*P, d*P} d°P,
— Frg. 2; 2¢(4) _p /___/._____”_G__l 2
do = 1) |47 WIG"8 O (Pur P~ Pi= P = P3) 1t St 0
Here I(s) is some function of s and coupling constants which are of no importance for our
purposes, the propagator A¥ accounts for the “known interaction” of 4 with C, and the

(5.3)
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invariant function G is the four-dimensional Fourier transform of G(x), namely
G = (AP)[m, [ d*xpo[x* + (P x)*[m2]8(x) exp [i(Py — P.[2)x]. 6.3)

In the lab-system, where C before the disintegration is at rest, the function G takes a simple
form

G = [ @xpo(x?) exp (igx),
q= ps—~V[(m2 +p2 e+ Am)2 —m], (7.3)

where p, = Pil,, is the spectator three-momentum in lab-system, 4m = 2m—-m_ > 0
is the mass defect of C, and V is the velocity of the “‘rest-frame” of 1 (i.e., where 1 = (0, 1))
in the lab-system.

The effect which focuses our attention is due to the difference between ¢ and p,,
which implies the shift of the argument of y,, and hence the unisotropy of spectators in
the lab-system. One easily sees that the V-dependence of this difference has its origin in
different simultaneities of different reference frames, while the second factor (m? 4 p?/c)/?
+ Am/2 — m corresponds with the off-shell mass (energy) of the spectator inside C. Remember
that y, is the eigenstate of the invariant mass of C to the eigenvalue m,, and thereby
m—A4m/2 = m_[2 is the mean energy of each constituent of C in the lab-system. On the
other hand, (m?+ pZ/c?)'/? is the on-shell mass of the spectator in the same lab-system
after the disintegration.

By taking A from (10.2) ¥ becomes the velocity of the overall cm-system S* in the
lab-system S;. Note that the difference between g and p, vanishes in the following partic-
ular cases, whence the spectator distributions — apart from the phase space factor —
regain spherical symmetry in S;. (/) In the NR limit, as both aforementioned effects are
relativistic. (i) For infinitely heavy C, as then S* = S|, hence ¥ = 0. (iii) If, instead of
favouring S* as given by (10.2), one takes 4 = P./m, favouring the Jab-system S;, as then
V = 0. Finally, (iv) when C becomes an infinitely loosely bound. system. Then 4m — 0,
and the Fermi momentum p, also vanishes, thus ¢ = p, = 0 = Am, and the bracket
in (7.3), vanishes. The case (i) must take place for selfconsistency reasons. Otherwise,
any free particle could be incorporated into C thus changing ¥V, and consequently the
measurable cross-section.

The electron-deuteron collision resulting in the disintegration of the latter should
be the best suited process to prove or disprove the unisotropy effect due to g # p,. In this
case the interaction is relatively well known and it fulfils the additivity assumption which
is crucial when speaking of true spectators. Neglecting spins which do not contribute
to the unisotropy if particles are unpolarized, let us identify 4 with the electron, and C
with the deuteron of mass M = m, = 2m—Am. Here m is the nucleon mass and Am
is the binding energy of the deuteron. Moreover, let us denote by O, the lab-angle
between the lab-momentum of the spectator and primary electron, and by dQ, the element
of spherical angle of the spectator in the same lab-system S;. Neglecting the electron
mass one obtains that

3 2
LT ) DO e
dtdp,df2, 1—-E,/M+(p,/M) cos 0,

IG(eM)I7, (8.3)
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where J(s) is some s-dependent kinematic factor, D is the photon propagator, and
E, = (m? +p2)V2is the spectator energy in S;.

Within this simplified model, two factors are responsible for unisotropy of spectators.
First due to the phase space, equal to [1 ~E /M +{(p,/M) cos®,}*, and the second, which
we are interested in, due to the difference between p, and ¢. The essential point is that
only the second one depends on s (via V). The contamination of the double scattering [16],
as well as the final state interaction {17], or the phase space factor, ali of these also disturb
the angular distribution of spectators, but these modifications are independent of s.
Therefore, the investigation of the s-dependent anisotropy of spectators seems to be a suitable
test of the proposed hypothesis (10.2).

The quantitative discussion of the unisotropy effect of the spectators requires analysing
different effects already mentioned. However, in order to get some idea of the magnitude

A(ps; V)
0.50 Y ~10(E= » GeV)
45|
0.40 08 (752)
35k
030 (282
/
25b
020 / p4 {125)
/
i5L
010 o / 02 (047)
2 /
050 ?
0 100 200 3

00 ps [MeV/c]

Fig. 4. Asymmetry coefficient A(p,; V) of “spectators” as function of momentum p; of the spectator and

E
lab-energy E of the impinging electron (V = i’ M — deuteron mass
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of the s-dependence of unisotropy, let us confine ourselves to the analysis of the factor
|G(g?)|?. Taking the Hulthén function for y, with parameters from [18] the forward-
-backward asymmetry coefficient of the spectators of a given momentum p, = [p| is
plotted in Fig. 4, as a function of p, for different values of ¥ = ¥(s). This asymmetry
cannot be directly compared with experiment for reasons explained before, but numbers
which can be realistic are the relative unisotropies of spectators for different values of
s (or V), and these can be read off from Fig. 4 [19]. We see that the effect is rather small
for mean Fermi momenta (about 50 MeV/c for the deuteron), but it increases with
increasing p,. For infinite s it increases to a finite, maximum value (due to the non-singular
character of this effect in the V' variable) equal to about 209 for the spectator momentum p,
of 150 MeV/c.
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