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Investigations of exact solutions to the Einstein gravitational field equations are
described. A systematic search for solutions with certain symmetries leads to several interesting
properties of the gravitational field equations.

The Einstein gravitational field equations are now sixty years old. The extreme richness
of these equations is exemplified by the fact that important new solutions to these equations
are still being discovered. These equations, in the usual notation, may be written

G;}+Ag§j = 875?1,‘.

Here the Einstein tensor G;; is built from the geometry (metric tensor) whereas the energy-
-momentum tensor 77;; is built from the geometry and other fields which are the source
of the gravitational field.

We list a few energy-momentum tensors that have been useful in discussing solutions:
perfect fluid, electromagnetic, scalar field, vector field, spinor field, etc. In general the energy
momentum tensor will be a sum of these various types. Thus, in order to discuss solutions
to the Einstein equations one must specify the source terms in these equations. Solving
outside the sources T;; = 0 is referred to as the vacuum problem.

The most important solution is the Schwarzschild solution for the gravitational
field outside a spherically symmetric source.

In order to find solutions one must make some simplifying assumptions. Several
different types of assumptions can be made but the one we shall consider is to assume the
geometry has certain symmetries. For example, in the Schwarzschild solution one assumes
spherical symmetry. Petrov [1] has given an exhaustive classification of possible gravita-
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tional fields based on their symmetries. These different types are usually referred to as
Bianchi type gravitational fields. In order to completely specify the Bianchi type we
must give the number of independent symmetry transformations and the nature of the
transformations. For example, the Bianchi type G,V means there are four symmetry trans-
formations and they are Bianchi type V. Finally in order to further specify the gravitational
field one must specify the type of subspaces that the group of symmetry transformations
generates. For example G,V on V; means that G,V generates three dimensional hyper-
surfaces V5.

We have started a detailed study of all spacetimes of the form G, — on V5 and G, — on
vy where V5 means a null hypersurface. One reason for this study is to see how the physical
properties of gravitational fields are associated with their symmetries.

One of the first solutions of G,V on V; was discovered by Farnsworth [2], who found
exact solutions for the case where the source is dust (pressureless perfect fluid). Farnsworth
showed his solution was an expanding anisotropic cosmological solution. One of our
first results showed that different Bianchi types do sometimes have very different physical
properties. The Bianchi type G,IV on V; allows only spacelike (tachyon) dust solutions [3, 4].
We now know that Farnsworth’s case may have either timelike (ordinary) or spacelike
dust solutions[5]. Apparently this property of the Farnsworth case is associated with the
possibility of a ,,whimper singularity” for this model [6]. (In a ,,whimper singularity” the
four-velocity changes from spacelike to timelike).

A detailed investigation of the possible types of dust for all Bianchi types of the form
G, — on V3 yields the results shown in Table I [5]. In this table S means spacelike four-

TABLE I

Form of the four-velocity for G4 on }; gravitational fields

B;Zfrﬁ;:iﬁ;oéetlge Form of the four-velocity

G,l 5

G.II (No gravitational field)
G, 1L T

GV S

(eAY S, T

G,V S

GV, (No gravitational field)
GaVI; S

(eAYR S, T

G4VII S, T

G.VIIIL S, T

-velocity and T means timelike four-velocity. Table 1 shows that for the Farnsworth G,V
we have both spacelike and timelike cases whereas for G,IV we have only the spacelike case.
One of the interesting results from this study is the preponderance of spacelike cases. Tachyons
have not been found in laboratory experiments, however, from our study of the gravitational
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field equations we find many such solutions. Our results do not prove that tachyons will
be found to be important in physics, however, they do show that from one point of view,
(Table I) they are preferred.

An investigation of several types of sources in Bianchi types G, — on V3 shows that
often these spacetimes often do not have solutions to the Einstein equations for most of the
simple sources mentioned earlier [7). For example G,VII on ¥ has no solutions for: perfect
fluids, massless scalar fields, massive scalar fields, massless vector fields, massive vector fields,
massless spinor fields, massive spinor fields, electromagnetism, massless scalar fields plus
dust, electromagnetism plus dust, massless scalar fields plus electromagnetism, and any
other source with a traceless energy-momentum tensor. Other Bianchi types in this same
class also do not have solutions for these cases {8]. The reasons that these Bianchi types
do not allow solutions to the Einstein equations are not clear. It is possible that other
gravitational field equations would allow solutions for these cases.

It is interesting to compare these results with electromagnetism. Maxwell’s equations
can be written in the form

FI =4nj', Fy;=A;;—A;;
For any choice of the potential 4; we can calculate the current j* which will produce this
electromagnetic field. Thus, Maxwell’s equations will always be compatible with any symmetry
assumptions on the potential 4;. Thus, the property of the gravitational field equations
discussed in the previous paragraph does not have a counterpart in electromagnetism.

It is interesting that a certain symmetry type G, — on V5 is apparently not compatible
with the Einstein equations. It is possible that this same type of behaviour could aiso be
true for “‘quantum gravity”. Since we have found the classical equations are incompatibie
with certain symmetries, the equations of “‘quantum gravity” might also have this property.
Thus, one might worry about a priori assumptions on the geometry in trying to develop
‘““‘quantum gravity”, in particular in “‘quantum cosmology’” where one starts with particular
(but reasonable) Bianchi types.

In general the spacetimes we have considered in detail in this paper are simple enough
to correspond to cosmological solutions. Our interest in these simple Bianchi types is, however,
to try to understand the inherent possibilities in the gravitational field equations. As long
as the general solution to these equations in unknown one must proceed in a manner similar
to that described in this paper.

When we look for solutions of the Einstein equations with a massive vector field as
the source we are asking how gravity fits together with massive vector fields. (Of course,
nature knows the answer since both vector mesons and gravity do exist.) In our work to
date on Bianchi type gravitational fields we believe we have found some interesting heretofore
unknown results. Of these results the preponderance of tachyon solutions and the incompati-
bility of the Einstein equations with certain symmetries deserve special mention.

The author thanks John C. Zimmerman and Wiliam T. Lauten, III for useful discussions
of the material in this paper.
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