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PROTON-PROTON AND PROTON-ANTIPROTON ELASTIC
SCATTERING IN THE DUAL UNITARY SCHEME*
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The pp and pp elastic scattering amplitudes are calculated in the dual unitary scheme.
It is shown that the crossing symmetry of the pomeron term in the low energy region is
restored due to the presence of annihilation channels in the pp scattering. The total annihi-
lation cross section and the f-dependence of the elastic scattering amplitudes are also discussed.

1. Introduction

Duality and unitarity consititute together very powerful constraints on hadron collision
amplitudes. In recent years a method [1-3] was proposed for calculating the imaginary part
of the elastic scattering amplitude as a shadow of the muitiparticle processes,

2 Im Ty = Y (n|T*i) {n|T}i), €3]
when the latter are described in the framework of a multi-Regge cluster model obeying
semi-local duality and exchange degeneracy.

In the first approximation one assumes that the sum in Eq. (i) is taken only over the
non-diffractive multiparticle states. Groups of particles with small invariant masses M < M
are described in terms of the resonance (cluster) approximation. Semi-local duality then
allows to replace the multireggeon exchange diagrams appearing in the unitarity sum by
reggeon loop diagrams, as illustrated in Fig. 1. The reggeon loop can be either crossed
or uncrossed corresponding to the quark diagrams (a) and (b) of Fig. 2, respectively. It
has been shown [2] that the elastic scattering amplitude divides automatically into two
components. One of them consists of contributions from the uncrossed reggeon loop
diagrams and thus corresponds to the exchange of nonzero internal quantum numbers.
The second component consists of diagrams with at least one crossed loop. It dominates
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at high energy and has vacuum t-channel quantum numbers. Consequently, it can be identi-
fied with the pomeron exchange contribution. Numerical calculations [2] were performed
for the meson-meson (MM), meson-baryon (MB) and baryon-baryon (BB) scattering.
It was assumed that only the leading meson exchange is important along the multiperipheral
chain.

———e
semi-local
duality

b
Fig. 1. a — resonance (cluster) production graph, b — reggeon loop graph

ﬂj§
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Fig. 2. The two types of allowed reggeon loops: (a) crossed loop and (b) uncrossed loop

In this paper we study BB and baryon-antibaryon (BB) elastic scattering in the dual
unitary scheme of Refs [I,2]. In particular we investigate the problem of the crossing
symmetry of the pomeron exchange contribution in BB and BB collisions.

One cannot obtain a crossing symmetric pomeron term within the meson exchange
approximation. The problem appears already at the single loop diagram level: the diagram
(a) of Fig. 2 is present in BB but not on BB scattering. Also taking into account all the
higher order meson loop diagrams, we could perhaps obtain asymptotically equal, for BB
and BB, pomeron terms but they differ at any finite energy [4].

Eylon and Harari [5] pointed out that it might be possible to arrange a crossing symme-
tric pomeron if one included annihilation channels into the unitarity sum for BB scattering.
The role of baryon exchange has been also stressed by Freund and Rivers [6] and Gula
and Pennington [7] but in a somewhat different approach. They take exotic mesons in
the intermediate state and conclude that in the low energy region the pomeron in the proton-
-antiproton (pp) elastic scattering is given by the single baryon loop of Fig. 3 whereas in pp
by the single meson loop of Fig. 2a.
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We present here a more systematic calculation of the pp and pp elastic scattgring
amplitudes which we hope to be accurate enough in the tens GeV energy region. We have
taken into account meson and baryon loops at the one and two loops level. We keep cut-off
value of resonance (cluster) masses M = 2.45GeV (M2 = s = 6 GeV? as in the original
work [2]). It turns out that the contribution from the annihilation channels indeed restore

| .

B - = 8

8 = B

Fig. 3. Baryon loop proposed in Ref. [7]. Slashes denote intermediate states of arbitrary mass (allowed
by energy conservation)

crossing symmetry of the pomeron, as suggested by Eylon and Harari. However, other
meson and baryon two loop diagrams are also important in the low energy region of
both reactions.

We have found that the pomeron contribution
(i) is equal for the pp and pp elastic scattering,

(if) is approximately energy independent for 10 < s < 50 GeV?,
(iii) has a reasonable slope in 7.

We have also calculated the 7-dependence of the full do,,/df and found the slope param-
eters for both reactions to be of the right order of magnitude. The total pp annihilation
cross section has a reasonable value as well.

The paper is organised as follows. In the next Section we discuss general assumptions
and present diagram counting. Section 3 contains numerical details and discussion of our
resuits. A summary of our resulits is given in the last Section.

2. The loop diagrams

We discuss now the one- and two-reggeon exchange resonance (cluster) diagrams taken
into account in our calculation.

Diagrams considered by us are presented in Fig. 4. We follow the scheme of Ref. [5]
and ideniify the graphs with no quark, two quark and four quark lines exchanged in the
t-channel as the contribution to the elastic scattering amplitude of the pomeron term,
meson term and exotic term, respectively.

We restrict ourselves to diagrams with resonances (clusters) in the s-channel which
can be represented by two or three quark lines and neglect all exotic states (qqqq etc.). Up to
now there is no definite experimental evidence [8] for the existence of such resonances.
Even if they exist, their masses are presumably larger than 2 GeV [9] and, therefore, mostly
above our parameter M. However, one should remember that in our approach we include
high mass exotic states in the s-channel in the sense of semilocal duality. They are dual
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Fig. 4. Allowed quark (and loop) diagrams at the one and two loops level for the pp (a —¢) and pp (f — 2)
elastic scattering. In the loop diagrams the wavy line, round line and double wavy line denote the meson,
baryon and exotic trajectories, respectively

to the 7-channel meson exchange in BB scattering and appear when we sum over the diagrams?
shown in Fig. 5. Although, as argued above, the first diagram of the sum has been neglected
by us, the two loop diagrams of Fig. 5 are included in our caiculation.

It follows from the exchange degeneracy of the meson trajectories that diagrams in-
volving twists in the produced lines (Fig. 6a) or both crossed and uncrossed Regge exchanges
in the same loop (Fig. 6b) are absent.

; MHHE_

Fig. 5 .Unitarity equation for an exotic intermediate state in terms of the cluster diagrams (cluster masses
satisfy the condition M < M)

In our calculation we take, in the first approximation, the baryon exchange also as
an exchange degenerate pair and, consequently, neglect diagrams with a baryon exchange
similar to those of Fig. 6.

One can easily check that there is no one loop diagram contributing to the pomeron
in the pp elastic scattering. At the two loop level there are three types of diagrams building

! Qur diagrams always describe intermediate states whose masses satisfy the relation M < M. The
only exceptions are the LHS diagram of Fig. 5 and the diagram of Fig. 3 (they are marked by slashes).
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the pomeron. Graphs 6 (m) and (n) of Fig. 4 are the meson loop diagrams, graphs (r) and (s)
represent contributions of baryon exchange in non-annihilation channels and graph (z)
represents annihilation contribution to the pomeron term. Diagrams (f), (g), (i), (§), (k), (D),

Fig. 6. Meson diagrams forbidden in our approximation

(0), (p), (u) and (w) in Fig. 4 give the meson term and graphs (h) and (t) build the exotic
term. Graphs (i), (h), (1), (u), (w) and (z) of Fig. 4 generate the total pp annihilation cross
section,

In the pp elastic scattering all diagrams (a — e) give the pomeron term.

3. Details and results

Now we wish to specify the analytical representation of diagrams, parameters of the
exchanged trajectories and their coupling constants.

The analytic formulae for the one and two loop diagrams of Fig. 4 are given
in Appendix A. They are a direct generalisation of the well-known triple-Regge formula.
We take them for meson and baryon loop diagrams as well. The effective coupling constants
G of all diagrams in Fig. 4 are given in Table I

The t-dependence of the triple-Regge vertices and phase factors for loops, which
constitute formulae (A1) and (A2), are explained in Appendix B. We note here that param-
etrization (B1) is taken also for BBM and BBEx vertices as suggested by the results
of Dias de Deus and Uscherson?® [13].

Semi-local duality for the meson trajectory-particle and the meson trajectory-meson
trajectory amplitudes is well established {10]. As meson exchanges we take the meson
trajectories of the vector-tensor nonet which we assume to be exchange degenerate. We
distinguish three types of trajectories which describe the SU(3) symmetry breaking in the
trajectory intercepts and according to their quark content

ay = 0.5 p, n quarks only: f, w, g, 4,
agr = 0.35 p or n and 1 quarks: K*, K**,
%, = 0. 2 quarks only: ¢,f",

a' = 1. GeV-2.

21 am indebted to dr Dias de Deus for a discussion on this point.
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TABLE I

List of parameters and coupling constants used for evaluating the diagrams of Fig. 4. We use the following

< P {4
abbreviations: ggr = £, ENNEx = £Ex» ENNS = EN»> VEx = VEx» VM = ¥M

XMy &M, %M, %x, Ox, by b G
a 0.5 0.5 — 0.5 — 0 — | (yh+vh) 1627
b 0.5 0.5 0.5 0.5 0.5 1 0 | (h+77) 16821682 x2
c 0.5 0.5 035 0.5 0.5 1 0 | OF+ve)8g2 1657 x2
d 0.5 0.5 —1. 0.5 | —0.35 0 i (V5+veo) 1687 4gngExVEx X 2
e 0.5 05 | —1. 05 | -035| 0 0 | (p+ve) 1682 4gngE,yEx X 2
f 0.5 0.5 — 0.5 — 1 — | Grtvntvatyd) 16g32
g 0.5 0.5 — 035 | — i — | GV HYR) 88%2
h | —1. —~1. — | —0.35 — 1 — | Heped?
i —1. —1. — | —0.35 — 0 1| 4gpxvEn)?
j 0.5 0.5 0.5 0.5 0.5 1 1| Or+ve+ye+vh) 1622 162
k 0.5 0.5 0.5 0.35 0.5 1 1 (7 +vem+ye+va) Be? 16g2x 2
1 0.5 0.5 0.5 0.35 0.35 1 1 W +ve+yat+ya) 8g? 8g2
m 0.5 0.5 0.5 0.5 0.5 0 0 | (yF+v5) 168 16g?
n 0.5 0. 0.5 0.35 035 | © 0 | (FHve) (Bv2g?)?
0 ~1. 0.5 0.5 @ —035 0.5 1 1 (Y +Ya+7e+va) 1687 dgngusyE X 2
p | -1 0.5 0.5 | —0.35 035 ] 1 1| (P +Yo+Ye+va) 8e 4gngExyVEx X 2
r —1. 0.5 0.5 | —0.35 0.5 0 I | 0p+70) 1627 dgngecyes X 2
s —1. 0.5 0.5 | —0.35 0.35 0 1 Yyr+70) 822 dgngexyex X 2
t —1. ~1. ~1. | —035] -035] 1 1 | 4(ypcgEn)? 42ty
u —1. —1. —1. —-0.35 | —0.35 0 1 Ay 8Ex)? d8Ex X 2
w | -1 —1. —1. —0.35 | —0.35 0 0 | 4(YExgEx)® 488«
z —1. —1. -1. —-035 | -035| 0 0 | 4(ypx8E) 4t x 2

Hoyer et al. also discuss duality in BB processes and they conclude that meson reso-
nances in the baryon trajectory-antibaryon scattering are dual to an exotic trajectory with
an intercept [11]

~0.5 2 o (0) = —14. 2)

Pickering [9] quotes oz, = — 1.3, Pennington and Gula {7} g, = —1.2. For our calculation
we have taken

o () = —1.+1. (3)

For baryon exchange we have a possibility of the 4,(37(1236), 27(1924), 4} *(2450)
resonances), nucleon N,(3*(938), 37 (1688), $"(2220) resonances), nucleon N,(37(1512),
7 (2210), Y} 7(2640) resonances) and other lower lying trajectories. While 4; has the
highest intercept and should dominate at high energy its couplings are much weaker than
the nucleon ones [7]. We are concerned with the low energy region and consequently we
neglect the exchange of this trajectory. We take into account only nucleon trajectories N,

and N, assuming exchange degeneracy between them and the following parametrization:

ag(u) = an(u) = ~0.3540.85u. €Y
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We also neglect unnatural parity exchange. It has been shown [12] that, at fixed
incoming energy \/ s, the unnatural parity exchange becomes important when the masses
of produced resonances are big. Also, the coupling of the pion loop to the external protons
is smaller than the coupling of the baryon loop. We have checked that in our approach
with the cut-off value M = 2.45 GeV for the resonance masses the pion exchange contribu-
tion is negligible in the energy range under discussion.

2 2 2
(a) (b) (c]
Fig. 7. Three types of loops

Finally, we must specify couplings y%, &sss» &nny> Ennes @and yE,. From experimental
data we have y7 = 10 GeV~!. Other meson couplings to the external protons are given
by the SU(3) symmetry. Triple f-coupling has its bootstrap value about 8 GeV-! [3]. We
take g,,, = 8 GeV~'. From a phenomenological analysis it has been recently found [7]
that

gNNExygx ~ gNNfV? = 270 GCV'Z. (5)

Therefore, guny = 27 GeV~' and we are left with one free parameter gyng,. All the param-
eters used in this calculation are listed together in Table 1.
Numerical calculations were performed for 10 < s < 64 GeV2, Results are given in

4 PP
imb mb
50 500
20F 200
0r 0 o
5 sk
b L
Fidd 2+
7 7 1 A1
10 20 30 40 50 6‘02 0 20 30 40 50 602
{al sLGeV" 2 (b) s[GeV <]

Fig. 8. Pomeron term in (a) the pp and (b) pp scattering
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Fig. 8 and Fig. 9. The o,(pp) is almost s-independent in the range 10 < s < 60 GeV2.
For higher energies the cross section calculated in the two loop approximation begins
to decrease.

Now we turn our attention to the pomeron term in pp scattering. Fig. 8 shows that
even in the low energy region the dominant contribution comes from the diagram (m) of
Fig. 4 with two crossed meson loops. Graphs 4 (r) and (s) alone are not sufficient to com-
pensate the difference between the meson loop contribution to the pomeron terms in pp

4
[mb| 5 ~
poas “{G’-‘-" T . a; (5p)
S %vrm_?.*-\w.
r ~ Pin p?
~
~
20r N M in pp
\ —_———
\
wor \\
- \¢xEx in pp
{ \
L N\
5 ~
r AN
N
*! N
N
2 . . AN

0 20 0 40 50 60 srGeyd

Fig. 9. The s-dependence of the calculated oo(pp) and oy, {pp)

and pp collisions. Moreover, when we take these graphs into account we must include
diagrams 4 (d) and (¢) in pp scattering. Contributions coming from both sets of graphs
are equal and the pomeron terms in both channels are still different. It turns out that the
“missing piece” of the pomeron in the pp scattering is given by the graph 4 (z) representing
annihilation channels. When we take gyne, = 23 GeV~! (a value compatible with gyng,
~ gnny as follows from the one loop dominance [13]), we obtain almost equal pomeron
terms in both channels in the range 10 < s < 45 GeV?2. When the incoming energy grows,
higher order loop diagrams become important first in the pp scattering (these with anni-
hilation channels), than in the pp scattering (Fig. 8). This effect explains why at the two
loop level P in pp falls, with an increase of energy, faster than P in pp.

Now, we have fixed all parameters and we can check whether other predictions of our
scheme are reasonable.

Fig. 9 shows that the ratio o(pp)/o+(pp) is comparable with the experimental data.
The output meson and exotic exchange terms in pp elastic scattering are also shown in
Fig. 9. The energy dependence of these terms can be approximately fitted by powers of s,
as seen in Fig. 10, which then gives us the effective output intercepts agy* = 0.6 afy &~ —1.9.
They are quite consistent with the input ones. The generated pomeron term has its intercept
roughly equal to one ap = 1.

Next, we discuss the t-dependence of the elastic amplitudes which are believed to
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be dominantly imaginary. These amplitudes calculated from Eqs (9) and (10) with the small
t-approximation are found to be nearly exponential in ¢ within the range —0.15
< t < 0 GeV?2, Therefore, in Table Il and in Fig. 11 we quote only slope parameters b
of the elastic differential cross sections (experimental data are taken from Ref. [16]). It
turns out that the pomeron terms in pp and pp collisions have roughly equal slopes.

~

L n

WOxExin pp

©

20

bk
3 4280 s

Fig. 10. The s-dependence of the meson and exotic exchange term in pp scattering

The slopes of the full do,/dt are lower but comparable to the ones expected from elastic
scattering data. This discrepancy is much more serious for pp than for pp collisions. In
our opinion, it arises from incorrect phase factors of baryon loops due to the assumed
exchange degeneracy between N,—N, trajectories®.

We think that it also causes an exotic amplitude which is too large. In our model
the ratio between the exotic and nonexotic cross sections at p,,, = 5 GeV/cis ~ 1: 40,

The total pp annihilation cross section is generated from graphs (i), (h), (t), (u), (W)

TABLE II
Slope parameters for different contributions to oy
5 [GeV?] 16 22 32 45
de
doei(pp) 524 6.82 8.34 9.6
dt
P 6.02 6.77 1.5 8.1
pp M 9.1 11.22 13.56 15.42
Ex 10.5 12. 14.2 15.
ff%p—) 74 8.8 9.5 10.6

3 1t is well known that the elastic slope is very sensitive to the phase and spin dependence of the
multiparticle amplitude {17]. Spins of the produced resonances (clusters) are taken into account in the

sense of semi-local duality.
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and (z) of Fig. 4. At s = 12GeV? we obtain o,,, = 19.5 mb as compared to the experimental
value o,k = (25+5) mb [16]. However, our o,,, calculated in the two loops approxima-
tion falls, with increasing energy, faster than extrapolated low energy experimental data

(as expected in this approximation).

L

8 | {
il ! 1 1 1

25 PaplGevic

1. 1 ! 1 1

5 0 5 20 25
(b}

PronlCevic]

Fig. 11. Slope parameter of (a) the pp and (b) pp elastic differential cross sections

In our approach we have lost f-dominance of the pomeron. The breaking of this
property is stronger in BB and BB than in MB and MM collisions due to the important
role played by baryon exchange.

4. Summary

We have shown that the multi-Regge cluster model is able to explain the main features
of the pp and pp elastic scattering if baryon exchanges are properly taken into account.

Our simplified model gives semi-quantitative agreement with experiment. We have
obtained a crossing symmetric pomeron term. Annihilation channels give the piece which
restores crossing symmetry in the low energy region. Thus our more explicit model supports
the suggestion of Eylon and Harari [5]. However, contrary to the suggestion of Gula and
Pennington, the diagram with two crossed meson loops is important even at low energy.

The output intercepts of the meson and exotic trajectories (in the elastic amplitude)
are consistent with input values (in the multiparticle amplitude) but the output exotic
coupling constant is too big.

The slope parameters of the do,,/dt are of the right order of magnitude. Numerical
differences between obtained values and experimental data seem to be related to a breaking
of the exchange degeneracy among meson and, especially, baryon trajectories.
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APPENDIX A

The analytic formula for the one loop diagram, after substitution of the triple-Regge
vertices, phase factors and integration over ¢, and t,, takes the following form (in small ¢
approximation)

G 1
Im TO() = ——— (‘dslds2 —~ oM Op3Ma(©)

2°m°p, /s )

2oy
v ’ ’
X ( v ) (s’1)czr"lf(SIZ)aNIt2 exp <2at1min

U410,

(AD)

a’—n*bo, ky t
2a Pa

s’
where s; = k?, v, =s5;—m?, v=s—-mi-mi a=d Iog( s +R) s; = ti+c,
2
0 for crossed loo 1 for boson resonances , -
1 for uncrossed I(I),op’ €= 11.5 for fermion resonances’ F* = I smi, m)[2 s,
ky = 3V3(s, 51,5,)/2 /5, M(x, y, z) usual triangle function, #; i, = 2pky — A*(s, s, m2, 5., m7,
$3)2s, A¥(x,y,a,b,u, w) = xy+ab+uw—xb—ya—xw—yu—aw—bu.
The kinematics is shown in Fig. 1. The ¢,,,;, is minimal momentum transfer. For a more
detailed discussion of formula (A1) we refer to the original work {2].

For the two loop diagram we get

b=

G
2Im T = jds,dszds3d3120(s12—rls)9(523——r23)

kiks
a1a2Pa2 Vs, kiq

v“;Ml - Zaxxv;Mz —ax1 —asz§M3 = 2ax,

Ux 2 Uxl —&x2

+ ,

xR (“‘) (515283)™ " exp [2altlmin +2a58min
U3

2 2. 2 2.
ay—mn . b - b
+t<-1____:kl+ a—z—f-—zzk;.,):l (A2)
2a1pa 2a2pa
where k, = )-1/2(5, 523, 51)/2 \/E’ ks = /11/2(5, 125 53)/2 \/E, q= /11/2(512, S, Sz)/Z\/sl—z,

Si
a; = o, log [~ ,+1 +R), ro= 0 for crossed loop
' SiSi+ 1 1 for uncrossed loop,

1

11/2
Sy3 = 2—* [ At (55 S125 53)'t (512, S1> S2)—A*(S12, S125 525 535 815 S)]
Si2
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Other symbols are defined as in Eq. (Al). The integrals over s; are taken between the
lowest resonance mass m? (v; = 0.) and the cut-off value s = 6 GeV? or the kinematical
limit, whichever is smaller. To avoid double counting, there are f-functions in Eq. (A2)
which keep all loop energies s;;,,; for uncrossed loops greater than the cut-off value
(configurations with s;;,, < s for uncrossed loop are already taken into account in
a diagram with one loop less).

APPENDIX B
For the triple meson vertex (MMM) we take a simple parametrisation of Ref. [2]

S18
[V, 10 0T ~ <1+R 1%
S

it
) , R=15GevV7? (B1)
which is weakly dependent on #; (¢1) at small ¢, (¢;) and exponentially damped at large 7, (¢;).
The relative strength of the meson couplings is fixed by the SU(3) symmetry with
ideal mixing and by the exchange degeneracy. For the meson loops these couplings are
(see Fig. 7a)

, ) e
Lymm = MZM 877 r8marioms(Ta + €™ g ami(Ta e 4y (B2)
3M4q

where Ay, = ¢y,
gvovoms = T8 (v, Avs,Am -+ €1€2€3Am, An, An)- (B3)

(gm,m,M; denotes a triple meson coupling [14] and 4; and ¢; are the SU(3) A-matrix and
C-parity of the meson M;, respectively). Parameter g, (triple f-coupling) is an overall
normalisation and the sum in Eq. (6) is taken over the vector-tensor nonet trajectories.

Phase factors for crossed and uncrossed loops are 1 and ™ ™9, respectively. There-
fore, the coefficient of 1 in formula (6) refers to crossed loops and the coefficient of ™24
refers to uncrossed loops. Interference terms are cancelled out by EXD assumption.
Baryon loops have the same phase factors and in case of only one baryon trajectory
(nucleon N) the appropriate couplings are

Lynex = 4gnnex8nnm  (Fig. 7b),

Leynes = 4(gNNEx)2 (Fig. 7c). (B4)
The full coupling coefficient G for a given diagram is a product of the coefficients L and
the couplings y¥; of reggeons M to the external protons. We note that the f and w exchange
contributions to the pomeron term in BB and BB scattering have the same sign. Therefore,
there is no cancellation between diagrams as it was in Ref. [15] and the pomeron has only
one component with C = 1.
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