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Effective potentials of the quartic meson-meson interaction and of the large N O(N)
o-model are examined. In both models the first order radiative corrections restore the sym-
metry broken in the tree approximation. The potential of the O(N) o-model has a minimum
which is lower than the one found previously by Coleman, Jackiw and Politzer.

1. Introduction

Evaluation of the effective potential is a particularly useful tool for field-theoretical
investigations, especially for problems of the ground state and symmetry breaking. The
effective potential was introduced by Goldstone, Salam, Weinberg and Jona-Lasinio [1],
[2]. The recent revival of interest in this problem is due mainly to Coleman, Weinberg
and Jackiw [3], [4]. They were the first to evaluate the radiative corrections to the poten-
tial by summing up infinite sets of Feynman diagrams in a loop expansion. Coleman and
Weinberg have also shown that the radiative corrections may be the origin of spontaneous
symmetry breaking.

In this paper we give two examples of models exhibiting an inverse phenomenon
namely the dynamical restoration of symmetry. These models are the A9* theory and the
large N O(N) generalization of the g-model of Coleman, Jackiw and Politzer [5]. Both
these models have a common feature: One encounters tachoyn poles while studying
spontaneous symmetry breaking in four dimensions.

In our previous paper [6] we have suggested that we should probably expand Green’s
functions around the symmetric vacuum, since then tachyons do not appear. In the present
article we give more details which can, hopefully, elucidate this problem. We demonstrate
that the potential actually has two minjma — one corresponding to the symmetric vacuum
and another one, leading to the asymmetric ground state. For the symmetric minimum the
potential has a lower value than for the asymmetric one. Thus we must expand around
the global minimum; expanding around the local minimum leads to the tachyen disaster.
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2. The model and the combinatorical trick

Let us consider the usual massive &+ theory defined by the Lagrangian:

i
£ =1 (00)* -1 m*o’— i gd*.

We find particularly useful to replace (2.1) by
2 1 4 2 Lo,  m
L =100 — —(g—6)P*" -1 PV + — ¥V -4 — V.
41 4; y3

The Euler-Lagrange equations of motion for (2.2) are
1
0o +m’d* + 3 gd* =0,

Y = AP%+m3.

@.1)

(2.2)

(2.3)

(2.4)

(2.3) is just the same equation that one obtains from (2.1) and is A-independent, (2.4) con-
tains no derivatives and is only the equation of constraints. From (2.4) the Lagrangian
(2.2) is seen to be equivalent to that in (2.1). Thus both Lagrangians (2.1) and (2.2) are
equivalent and lead to the same dynamical equations of motion but they generate different

Feynman rules.

While calculating Green’s functions we encounter the ¢* vertices as the @2V vertices
connected by a W-line. After some combinatorics we find that the same result would be
obtained if we would use only the ®* vertices with the coupling constant g/4! (see Fig. 1).
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Fig. 1. Feynman rules generated by the Lagrangian (2.2). Green’s functions are independent of 4
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Fig. 2. Certain contributions to the proper vertices are proportional to the constants occuring in the

combination g—24
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We must be more careful while calculating the proper vertices. It the 1plI diagram
can be made disconnected by removing one @* vertex then replacing this vertex by a pair
of @2 vertices may yield the 1pI as well as the 1pR (one-particle-reducible) diagram.
Fig. 2 shows that in this case the contribution to the proper vertex carries a factor g—24.

Making use of the freedom of the choice of 4 we set

A =1g. (2.5)

This reduces considerably the number of diagrams contributing to the lpl functions.
In particular, all the “bubble diagrams™ like those of Fig. 2 as well as all but one of the
contributions from diagrams containing self-closing loops cancel [6]. More to the point,
only one seif-closing loop contribution survives — namely the one-loop ¥-tadpole. As
we shall see later this tadpole also cancels, but the reasons are not of the combinatorical
nature.

3. Calculation of the effective potential

Referring the reader to the original papers! we briefly recall that the effective poten-
tial V¢ is a generating functional of the 1pI Green’s functions taken for external momenta
equal to zero. Thus we have:

Jd4xV(¢c(x)) = Z %fd“xl e d* X, Ty, oy X)PX1) -on 9(X)s 3.1

where I'™’s are the 1plI functions evaluated at zero momenta, ¢.’s are the classical fields
(defined as the vacuum expectation values of the quantum fields ¢). The definition (3.1)
can be immediately generalized to the case of an arbitrary number of different classical
fields.

Substituting (2.5) into (2.2) we obtain

I?‘l2

1
L =} (60 +15 gd* -1 D*¥P + % i " P (3.2)

The tree aproximation gives for the effective potential:

1 m?
Viee = ~17 89 +% @iy — >g i+ — w 3.3

One-loop contributions to Vg are presented in Fig. 3. Assuming (2.5) we have reduced
the number of the contributions to ¥, _,,,, since one-loop diagrams with external ¢-lines

cancel. We have
d*k Z : AN
V1 —loop — % JA(zn) < — ki) 3 (34)

' Ref, [7] offers an extensive introduction and contains many references.
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where k denotes Euclidean momenta. The summation in expressions of this type can be
performed explicitly [3] and we obtain

+ ). (3.5)

1 4 2 1, m “k
Veff = “ﬁg(pc""% 2% P *"'/)c+_~1/)c+% 3
g (2n)

2g

A Q Q

Fig. 3. One-loop contribution to the effective potential

In order to determine the ground state we look for the minima of (3.5). The conditions

Vidp, =0, aVicy, =0 (3.6)
yield
~Lggi+y. =0 or ¢, =0 (3.7
and
12 1 + m? + d*k 1 338)
2 % g ngc (271)4 k2+'§0¢ - ‘\ .
respectively.

In four dimensions both m and g require renormalization. We shall use the same
method of subtraction as in Ref. [5]:

m®  mi ; d*k 1

AL S Pl 3.9

e m oo @ 39
1 1 ) k1 1 (3.10)
g & Qm)* k* KM '

where the subtraction point M is arbitrary. Substituting (3.9) and (3.10) into (3.8) and (3.7)
we obtain:

@ = 0 or Y, = 0 (3.11)
and
oV 1 ms 1
=0=13¢2— — .+ — + = v log p /M, (3.12)
oy, 2 gr 32m

which are the conditions for minima of the renormalized potential. The renormalized
effective potential in one-loop aproximation is

mzR 1 1 1 Y.

Ve = z et — Ye— '5 c 31 .
r =% @y 2 Y zgk'f’ 128,{2?’ 647522;} M2

(3.13)
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This result bears a striking resemblance to that which Coleman, Jackiw and Politzer
obtained in the leading 1/N approximation to the O(N) generalization of the g-model [S].
This model is defined by:

d 2
L =1 Z (00,)° -4 1° Z P2~ é\r (Z ¢i> (3.14)

a

or, equivalently by

2
¢ = %zgzaﬁw +%—/ —%/:g:¢2——lix (3.15)

Exactly as in our case, the only contributions to V¢ stem from the diagrams of Fig. 3
with dashed lines interpreted as the O(N) singlet y..
In this approach it turns out that

N N N e

2 2 2 2 c
e < c c < c ) c1 . 3.16
=% E (<p)x+——uax ukx—-mnzx t gt log s (3.16)

The formal similarity between (3.13) and (3. 16) will allow us to study both models simul-
taneously. We must remember that the large N limit was essential for the derivation of the
latter expression while the former one was obtained after the complete one-loop calcula-
tions. It is a fortuity of no significance that it was possible to redefine both Lagrangias
in such a manner that the first orders of two different expansion schemes gave similar
results. However, this will spare us some unnecessary calculations.

4. Green’s functions

Combining (3.11) and (3.12) we obtain the two following sets of necessary conditions
for minima of the potential (3.13):

2m2
= —TR =0 @1
8r

or

Ve

]\—45‘ . (4.23, b)

Er
=0, . = mp+ —— u, lo
Pe Yy R 327152 W g
For negative y_ V., becomes complex, therefore only the points . > 0 may be regarded
as possible candidates for the stable ground state of our model.
First, let us asume that m3 < 0 and gz < 0. In the tree approximation, as it is well
known, the state of lowest energy is not <!®|> = ¢, =0, but @, = +(—2ma/g)"'>.
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Whichever of these we choose to be the definition of the ground state, the symmetry ¢ <> — @
is broken. Shifting the fields in order to make them have zero expectation values in the
vacuum state we find that now the new squared mass is positive.

Unfortunately the attempt to include the radiative corrections into this nice scheme is
halted by serious difficulties — one encounters tachyon poles in the propagators. In order
to see this, let us allow ¢ and . to depend on space-time and let us derive the effective
action I" (generating functional of the 1pI Green’s functions). In analogy to (3.13) we find

| m? ]
r= j.d“X[% e+ gri+ o pi-1 ¢ly.— . wJ —4trlog(—%+y,). (4.3)

t

If we expand around (4.1) and shift the field precisely as in the quasiclassical
approximation:

g - gtV —2mig, p-p, (4.4)

the propagators are found to be [6]:

D 1/gg+(1/327) [1—log (p*IM*)] @5)
®® T ~2my/gn+p’[1/ge +(1—log (p?/M*)/32n°]° '

2

= P (4.6)

D — .
T _amige+ p*[1/ga+(1—log (p?|M?)/321°]

We have only quoted the result since the calculations go exactly like the derivation of the
formulae (3.14) and (3.15) of Ref. [5]. Since both propagators exhibit tachyon poles,
we see that conditions (4.1) do not determine the ground state.

Now let us investigate the consequences of the assumption that the vacuum is deter-
mined by the conditions (4.2).

First we notice that if ma/gz < O then the equation (4.2b) has a unique (real and
positive) solution ., = . Now, instead of (4.4) we must perform the following shift:

=@y 4P (4.7)
This yields for the effective action:
[ | 2 1 4 2 -, 1,1 m?
' J Ax| 3 el et g0l gy voet vt R v
—3trlog(— 0%+ y.+9). (4.8)

y-tadpoles vanish since the linear terms of the expansion of (4.8) cance!l. Indeed, differen-
tiating (4.8) with respect to y. and setting ., = P we obtain:

1.,7112% d*k 1 1. m} %~J’d“k1( 1 1)
e et Ry T s w et e\ )
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where use was made of the subtraction prescriptions (3.10) and (3.11). Integrating on the

right hand side we obtain:

1 . mi |
— ylog p/M?;
3072 yiog y/

8r Zr
this is equal to zero in view of (3.12). For the propagator of the field & we get
Dao = - 4.9)
Py '

Now let us evaluate the propagator of y. Using the renormalization prescription (3.11)

we find:
[1 d*k 1 1 -t
Dpp = —| — = 4(22 2y 2, - 3 -2~>:]'
gr Qry  \k(k*+ M%) (K*+y) [(k+p)* +y]

Integration yields:

VO S U 1 i A O (S ) R 0 AN | B
log — AoNTE_ (g2 .
(p*+49)""—(p")

pZ
(4.10)

1
Dgyp = —4— — — log 2 — —
vy {gg 3277 B MR T 302

The expression in the square bracket is a monotonically increasing function of p? which
is equal to one for p® = 0. Therefore, the propagator (4.10) has no tachyon poles pro-

vided that
Lo g L o @1
— =~ —log = — —— < 0. .
3202 OB pE T 32

8r

)

Returning to (3.14) we find that this is just the condition for minimum of Vg at y, = §:
(4.12)

oV [oyll, =5 > 0.

Fortunately we are able to prove that inequality (4.12) holds. From (3.12) we have:

1 ms 1 P
2 R <
2m e TR log e 4.13
b X% VT o T Velo8 (4.13)
The potential constrained by the requirement (4.13) is:
1 1 %)
V= -—9pl+ S pl— 2 log —5; 4.14
2. o 12872 YT gan? ¥ OB 02 (@.19)
thus
otV 1 1 P 1 ¢
= - — 4 ——log—s5 + —y = ~ -— i 4.15
327_[2 Og 1\/12 + 327[2 5'(/)5 (% (pc)it;c 7 ( )
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Examining +¢? as a function of v, defined by the equation of constraints (4.13) we find
that for y, = 0 3p2 = —mi/gx > 0. Then as y, grows, ¢? increases and assumes its
maximum value at . = M? exp (32n%/gg —1) and then begins to decrease. At y, = @,
@ is equal to zero and is still decreasing, so

v

ope lpe=3

Dye=3 >0 (4.16)

and the point (3.7) is a true minimum of V.

The potential is non-analytic at y, = 0. Therefore we cannot repeat the analogous
reasonings in order to check whether or not the point (4.1) is a minimum of ¥. However,
it is not necessary. Substituting the conditions (4.1) and (4.2) in (3.14) we find that the
potential is equal to zero at the former point and assumes the negative value at the latter
one. Thus at (4.1) the potential has at most a local minimum. The origin of the tachyon
poles we have found previously resulted from expanding around the wrong vacuum as
expected.

The same analysis can be performed in the O(N) o-model (3.15). Then, in analogy
to (4.1) and (4.2) the potential (3.16) has two possible minima:

N

1 E : 2
L =0 4.17
N e i Xe (4.17)

a=1

and

e
};1 gt =0, fo=at —s X log X5 (4.18)

32n M

The use of (4.17) alone would undoubtedly lead us to the tachyon-like inconsistencies
indicated in Ref. [5]. Now we can see that it was caused by the presence of another (lower)
minimum of V.

Expanding around (4.18) and shifting the fields:

Pe = 9o Ao Koo (4.19)
where
X =R+ g%xlog#,
we obtain
N N N
r= fd“x [l Z @i gl ! Z PPete— 13 Z Plpe
2 a=1 2 a=1 2 a=1

= Xe— —xc] —3trlog[—O%+x.+1] (4.20)
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Now the propagators are free of the tachyon poles:

Dyegr = 8a/(P*+%) (4.21)
and
1 1 1 i 1 p2+42 1/2 (p2+42)1/2+(p2)i/2 -1
D,=——<+——5log—5 — = 3 log — =\1/2 NI 4
-~ Nlig 32n M 32z 4 {(p"+4n" " —(p5)"
(4.22)

which suggests that the model of Coleman, Jackiw and Politzer is still consistent in four
dimensions.

5. Conclusions

We have investigated the ground state in two models: in a Ad* theory and in the
O(N) generalization of the s-model. We have demonstrated that the radiative corrections
may restore the symmetry of the vacuum even if it was assumed to be broken in the tree
approximation. To the present author’s knowledge the radiative corrections were known
to be a possible origin of the symmetry breaking only. It is interesting that the same
mechanism may cause the inverse effect, namely dynamical symmetry restoration. This
confirms that the classical arguments for symmetry breaking must be applied with great
care.

It is a well-known fact that in the single parameter models no reliable conclusions
can be drawn from the study of the effective potential in any approximation concerning
the finite number of loops. Our calculations confirm this fact. Namely, higher loops will
add higher powers of g log w./M? to the potential (3.13). It may happen that these correc-
tions will turn our global minimum into a local minimum, or even a maximum, so that
the above restored symmetry can be dynamically broken again. We are not able to do more
than raise this possibility. This is in contradistinction to the O(N)g-model which is actu-
ally a two-parameter model (1/N and 2). This time calculations performed in the leading
order of the large N limit can, hopefully, be trusted.

I am grateful to dr E. Kapuscik and dr J. M. Rayski for critical discussions.
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