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DIFFRACTIVE DISSOCIATION IN UNCORRELATED JET
MODEL
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Numerical estimates of diffractive dissociation in uncorrelated jet model are performed.
The model describes fairly well the absolute magnitude and the general behaviour of diffrac-
tive cross-section. It fails badly, however, for the multiplicity distribution. This is mainly
due to the fact that only one coherent state has been used as the input.

1. Introduction

As is generally known (see e. g. Ref. [1]), the diffractive production can be calculated
from amplitudes of non-diffractive production by using the unitarity condition. Assuming
that the non-diffractive production is described by a hadronic bremsstrahlung model
[2, 3], the high-energy limit of diffractive cross-sections were obtained [4], taking into
account formulae of Ref. [1] and using the method of de Groot [5].

In the present paper we continue this study of diffractive dissociation in uncorrelated
jet model. We perform numerical estimates and show in some more detail how diffractive
and also non-diffractive cross-sections and multiplicities behave and to what extent the
model agrees with experimental data for proton-proton collisions. Two versions of the
model are considered. In the first one it is assumed that the produced objects are pions.
In the second version the produced objects are clusters. In both versions we find a qualita-
tive agreement with data on diffractive production although the version with clusters is
better. However, the model is not good for description of non-diffractive processes: discrep-
ancies occur when in the pion version the average total multiplicity and in both versions
the KNO scaling function are compared with experiment.

The origin of the discrepancy can be traced to the fact that only one coherent state has
been used as the input instead of a superposition of coherent states.
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In spite of this drawback, and maybe because of it, we think that these results show
clearly which restrictions should be taken into account when building up a model for
multiparticle production.

In Sections 2 and 3 we describe diffractive and non-diffractive production when the
pions are produced directly and we compare the results with the data. We do the same for
the average total multiplicity and the KNO scaling function in Section 4. In Section 5
we confront with the data the version of the model where clusters are produced. Section
6 contains an explanation of the discrepancies we have found.

2. Diffractive production

It was shown in Ref. {4], taking into account formulae of Ref. [1], that the diffractive
cross-sections for production of N mesons are given by
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with
Q1 = K> (Ins/p> =292+ 1)+ 1/4x {q3)),
for N even, and by
o8 =0

for N odd. In formula (2.1), s is the squared total c. m. energy of the system and u(z)
the digamma function. Parameter 1 is the meson coupling constant, <q_2L> the average
squared transverse momentum of a meson and « equals to half of the slope of the elastic
cross-section. Parameter p is defined by

(>Inp = [dq, In(Ng +u*e)q® fg)), (2.2)

where f{q,) is the normalized transverse momentum distribution of a meson, g its mass
and y Euler’s constant equal to 0.5772.

In order to study the behaviour of oy with the energy s and the number of produced
mesons NN, we have first to assume some definite transverse momentum distribution for
the mesons. We follow the suggestion of Barshay and Chao [6] and take f(g ) in the form

2

f(ql) = 2*77292,—5;‘) e'ﬁ‘/4l2+u2, (23)
where ['(q, ) is the incomplete gamma function and B a parameter which can be easily
determined once (q_z_ > and p are known. Furthermore, we take A equal to 1 in order to
obtain a flat leading particle spectrum [2, 3], and « equal to 6. We also assume that the
produced mesons are pions. Thus we take i equal to the pion mass and <q‘j_> equal to
0.16 (GeV/c)?. This allows us to determine § and g, for which we find respectively the
values 6.5433 and 1.0395. The value of f8 is in fairly good agreement with the fitted value
of Barshay and Chao which is 6.75.
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Fig. 1. Cross-sections for diffractive production of N pions versus energy s in case of pion
production
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Fig. 2. Ratio of the total diffractive cross-section to the elastic cross-section versus energy s. Experimental
points are taken from a compilation of Fiatkowski and Miettinen [9]

Now, all parameters being determined, we are able to represent the diffractive cross-
-section (2.1) for some values of N as a function of energy 5. This is done in Fig. 1. One
secs that the cross-sections first decrease with growing energy up to an energy between
100 and 350 GeV? and then increase with it. The decrease and increase happen faster
for small N. Moreover the overall magnitudes of the cross-sections decrease rather rapidly
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with growing N, which is in marked difference with Regge-pole models which predict ay
to be approximately independent of N [7,8].

In view of confrontation with experiment we now sum the diffractive cross-sections
(2.1) over all N’s different from zero and obtain for the total diffractive cross-section
something of the order of the elastic one. The ratio ¢°/a,; is plotted in Fig. 2 and compared
to experimental values [9]; the agreement is reasonable.
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Fig. 3. Probability of production of N pions diffractively versus energy s for pion production

We can also determine the probability of producing N pions diffractively. Fig. 3
shows its behaviour for some values of N versus energy s. It appears to be almost Furry’s
distribution with parameter proportional to In s, i. €. to the average diffractive multiplicity.

Indeed, the average diftfractive multiplicity grows approximately logarithmically with
energy. At high energies it is fairly well given by

(NP> = 0.7 Ins/u?>+1.2. 2.4

As expected, the coefficient in front of the In s term appears to be smaller than the one
obtained in non-diffractive production, as we shall see in next section, where we give a short
description of the non-diffractive production.

3. Non-diffractive production

In essentially the same way as has been described in Ref. [4] to obtain the diffractive
cross-sections for production of N mesons, we can calculate the non-diffractive ones,
using formulas of Ref. [1]. Expressed in terms of o, the result is

“AAIn s/E2)Y
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where I'(z) is the gamma function and ji is defined by

Ini= [dq, In(Vg® +u2e)f(g,). (3.2)

For pion production we find j equal to 0.5804.
From equation (3.1) we obtain easily the probability of producing N mesons non-
-diffractively, which is

ND N+1
PRP = e~ («NNDy 11y KAN_)_F_])_;, (3.3)
(N+2) N!
where the average non-diffractive multiplicity is given by
(NNPY = Alns/p?—1. (3.9

We see that the distribution (3.3) is similar to the Poisson distribution.

In case the produced mesons are pions, the ratios of the total diffractive cross-
-section to the total non-diffractive cross-section and to the inelastic one decrease
fast with energy and are at 3500 GeV?, respectively, equal to 33.89( and 25.3%;. Let us
now look at the total average multiplicity and the KNO scaling function.

4. Average total multiplicity and KNO scaling function

Since we have now the explicit formulae for diffractive and non-diffractive produc-
tion it is useful to look at the average total charged multiplicity (¥,> and at the KNO
scaling function [10] in order to compare them with experiment. Therefore we use a two-
-component scheme as was suggested e. g. by Fiatkowski and Miettinen {11]. We do it here
for the pion production.

The average multiplicity is given by

(NY = (NP +(1=0) (W™, @.n
where
0 = oo,
This gives us
(N = 3<{N>+2 4.2)

In Fig. 4 In {N_) is plotted versus In s. Experimental data points are taken from Ref. [12].
We see here that (N> is somewhat too small at high energies where the model is supposed
to give a correct description. That discrepancy will be removed, however, in case of
cluster production.
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Fig. 4. Average total charged multiplicity versus energy s compared to experimental data taken from Ref. [12]
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Fig. 5. KNO scaling function y (<—N>> versus N/{N for pion production compared to the experimental

fit of Mgller {13]
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Let us look at Fig. 5. There we have plotted the KNO scaling function defined by

D ND
v (—N—> = cwy I @3)

Gin

versus N/{N)> and compared to the experimental fit of Mgller [10]. Because of the pecu-
liar fact that for N odd oV is equal to zero, we took the arithmetic average of the separate
curves that we obtained for N odd and for N even at a given energy. We immediately
see that there is no scaling and that at high energies the diffraction peak develops while
the non-diffractive bump grows. This feature shows that the model fails badly in the descrip-
tion of multiplicities and distributions.

5. Cluster production

What we did in previous sections for the pion production is now repeated for the
case where the produced objects are clusters which we assume to decay isotropically into
3 pions. Formulae given above remain valid for meson cluster production, however the
parameters 8, ji and u are now functions of the cluster mass .# and its average squared
Cc. m. transverse momentum <Pi >, rather than the pion mass and the pion transverse
momentum.

We shall first determine the parameters. Next, we shall point out the differences be-
tween the behaviour of cross-sections and multiplicities of pions produced directly and of
pions produced via clusters.

A) Parameters

To determine B, ji and 1 we have to know .# and (Pi). We can get an estimate of
them by using the assumption about the cluster decay. Indeed, as done in Ref. [14], this
assumption allows us to average over the decay distribution and cluster production and
to write the following relation between .# and (P%):

g% = %<Jﬁ——u2> (1+2<Pi>>+y2 S (&R))

- 349 M2 M2

where p is the decay pion mass and <qi> its average squared c. m. transverse momentum
which we take equal to 0.16 (GeV/c)?. To obtain a total diffractive cross-section which
does not diverge we have moreover to satisfy the inequality

(P> < (5.2)

2%ay(+1)

as implied by equation (2.1). Thus for 2 equal to 1 and « equal to 6 we have to take
(P%y < 0.1971 (GeV/c)? (5.3)

and, thus with relation (5.1),

A > 13941 GeV. (5.4)
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In Ref. [2] it was estimated that {4 is equal to 1.3 GeV when the clusters decay into 3
pions on the average. Therefore we assume .# to be close to its lower bound and take it
equal to 1.4 GeV. With this value, we obtain from relation (5.1) that (Pi) = 0.1887
(GeV/c)?.

This gives us a value of 16.1765 for the slope f of the transverse momentum distribu-
tions of the clusters. We find also fi equal to 2.6059 and x equal to 2.7229. We note imme-
diately that this value of § is much bigger than the one we found in case of pion produc-
tion. In reality it is so big that the transverse momentum distribution of the clusters
approximately becomes

A(P)) = 8(PT (P (5.5)
This can be seen from the value of i (equal to ) which is here 2.6108 and thus very close
to the values of ji and u that we obtained here above.

B) Cross-sections and multiplicities

Using the assumption that each produced cluster decays into 3 pions, we can represent
similarly, as we did in previous sections, cross-sections, multiplicities and KNO scaling
function for the production of the decay pions.
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Fig. 6. Same as Fig. 1 for cluster production

In Fig. 6 we have plotted the diffractive cross-section (2.1) versus energy s for some
values of N, the number of produced pions. Comparing to Fig. 1 we note that the overall
magnitudes of the cross-sections have strongly increased.

When we sum the diffractive cross-sections (2.1) over the even N’s up to 10, we obtain
the total diffractive cross-section. We compare it to experimental data on o®/o,,. This
is done in Fig. 2. The agreement now is quite good.
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Fig. 7. Same as Fig. 3 for cluster production
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Fig. 8. Same as Fig. 5 for cluster production
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In Fig. 7 the probability of producing N pions diffractively is represented. We see
that the bumps which are typical to Furry’s distribution have now appeared at low energies
(as compared to these observed in Fig. 3). The parameter of this distribution is again
proportional to the average diffractive multiplicity which is here however approximately
energy independent. Indeed for s == 50 GeV?, it is very well given by

(NP> = 0.06 In s/u*+13.5. (5.6)

The ratios of the total diffractive cross-section to the total non-diffractive cross-
-section and to the inelastic one for cluster production at 3500 GeV? are reduced by ap-
proximately 309, when compared to the one obtained for pion production. They are
respectively equal to 229, and 18%;.

In Fig. 4 where we represented the average total number of charged pions produced
directly, we now plot the same quantity for charged pions which are produced via clusters.
The discrepancy we noted at high energies has disappeared and the agreement with data
is reasonable.

Let us finally look at Fig. 8 to the KNO scaling function, which with our assumptions
is the same for the production of the pions and of the clusters. We see that the discrepancy
with Meller’s fit is still very big, although it is reduced when compared to what was ob-
tained in Fig. 5. Thus the model still fails badly for multiplicity distribution. In the next
section we discuss the possible origin of this discrepancy.

6. Discussion

We shall try to see how the approximations which have been done in the model can
explain the discrepancies we found in previous Sections 4 and 5B.

The important approximation made in Ref. [1] was that the authors have represented
the diffractive amplitude by the overlap matrix element. This is correct only to the second
order in the overlap matrix. Although it is presumably rather difficult to estimate the error
induced by this approximation, it may be quite substantial, particularly at small impact
parameters, where o,,/0,,, is large. It would be certainly very interesting to estimate these
higher-order effects.

If one sticks to the approximation of Ref. [1], however, then there exists another way
of removing the discrepancy we found for the KNO function. This is to use as the input
a superposition of the coherent states and not just one of them. If we assume for non-
~diffractive productidn that the distribution we found is valid for only one component,
to get the observed distribution we have to take a weighted average over the distributions
describing the different components. This will essentially broaden the pseudo-Poisson
distribution and give a better behaviour for the KNO function in Figs. 5 and 8.

Thus we can say that the disagreements we found with experimental data clearly
indicate that a superposition of coherent states has to be used as the input in multiparticle
production models. This points out the direction of further work in this field.
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