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A method of solving ordinary nonlinear differential equations through a formal series
is applied to the approximate calculation of Regge poles. In particular, the nonrelativistic
potential theory, Dirac theory and a problem in quasipotential approach are considered.

1. Introduction

In potential scattering theory, the position of singularities of the Symatrix in the
complex /-plane are described by the continuous movement of a pole of the S;-matrix,
called a Regge pole. The physical bound states occur at a discrete energy where these poles
pass through an integer angular momentum /. Regge poles are generalized bound states
with complex angular momenta and they are closely connected with resonances. In potential
scattering theory any potential has an infinite number of Regge poles, corresponding to
different values of the radial quantum number.

Many approximate methods have been developed by a number of authors [1-3] for
the calculation of Regge poles. In the present paper we are going to use the method of
formal series to calculate Regge poles for a wide class of potentials. We apply this method
to solve nonlinear variable phase equation for partial amplitude. An exact expression for
the partial amplitude may be represented by the ratio of two power series of the coupling
constant. The zeros of the denominator of the partial amplitude determine the Regge poles.
When the series in the numerator and denominator are approximated by two polynomials,
instead of the corresponding series the Padé approximant is obtained. The approximation
is valid for strong and weak coupling.

In Section 2. Regge poles for the nonrelativistic potential theory are considered.
The trajectories of Regge poles are found for scattering by a Yukawa potential in the case
of strong coupling. Section 3 is devoted to a discussion of Regge poles for particles
described by the Dirac equation. In Section 4 the equation for scalar particles of equal
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masses and for a quasipotential, having in the coordinate representation the form ¥(r) = gr—*
in discussed. The corresponding problem for Regge poles is considered in detail by applying
the method of formal series to the variable phase equation for Green’s function.

2. Regge poles for nonrelativistic local potential theory

In an earlier paper [4] it was shown that in the case of a central regular potential
V = gVy(r) with the coupling constant g the variable phase equation

% =- @ Likn) + ifi(h{(kn)T, @

f(0) =0, 2

can be solved by the method of formal series. In equation (1) £i(r) is a nonrelativistic partial
amplitude defined by the relation fi(r) = ¢® sin §,(r), where 8,(r) is the phase shift
produced by the potential up to the distance r. The functions j(kr) and h{V(kr) are two
linearly independent solutions of the corresponding Schrédinger equation when V(r) = 0:

Jitkr) = \/ — Jueglkr),  BP(kr) = \/ ﬂ;—r H{Py(kr). &)

The functions (3) are defined for complex / and k so that (I) must be taken as the definition
of the partial amplitude for arbitrary / and &, as long as a solution exists. The solution
of equation (I) with condition (2) takes the form

N{fg, k; r)— Dfg, k
) = (g ';l(gtpg) (g ), @

= 3G q,,
Nig ki) = E N{™(g, k; ) = I exp {—g f dy —M} e, )
dpdy)

where

n=0
- 6G Is
Dyg, k) = ZDi'(g, k) = Fexp{—gfdy T[?i—y—]}'l, (6)
s ()
@r) = —iji(kr) [R{D(kN] ™, @)
Glo(n),r] = — J Volx )[h(l’(kx)]z Z(x)dx. ®)

4]

The symbol I' indicates that all functional derivatives must be on the left, acting thus
on all functionals which are put on their right.
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The behaviour of the pole positions of S, in I-piane, as functions of energy is determined
by the equation

D(g, k) = 0. )]
It is easy to verify that
i ,
D%g, k) = 1, Di'(g, k) = — Zgjdeo(x)j,(kx)h{ D(kx), (10)
]
2 © @}
DIP(e. k) = — 313 H%{x}h?)(kx)j,(kx)x J Vo) k)
0 0
+2Vo(x) [hiV(kx)]? J Vo(y)jf(ky)dy} dx. (11)

4]
We shall apply the above method to the case of the Yukawa potential, defined as
V() = 2mar™'e™H, (12)

having in mind that the obtained expression for Regge trajectories can be generalized to
the superposition of Yukawa potentials. In first order approximation for Regge trajectories
we obtain

Y ind v 1 ~ X
'ek j Jeam D)V ()dr— — f KAV = ie™ cos 1l (13)
o 0
or
ie™am u’ am ( u’ - int
" R, 1+§£—2 ——k—Q, \1+2_k2 = fe'™ cos nl, (14)
where
o1+ £, 2 - ar, (15)
2k? r
0
“2 g e*ur
R, (1+ 2_]?) -2 J k) -y (kr) S do. (16)

Q(2) is the Legendre function of the second kind. To investigate the pole positions of S,
in I-plane as functions of the k2 for large negative k2, we shall use the pole approximation
in equation (14) from the relation

0(2) = @_1- (D —rtgn(l+ PP (2). an
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Thus the zero of D{® 4+ D{Y approaches / = —n—1 as
2
am U
Zp(1+ 2,
K ( 2k2) ) (18)
_ = -
I+n+1

and the equation for a Regge trajectory is an expression of the form

am u’ )

l,,=——n—1-7P,, 1+ =], k=irx, k>0 19
i

For the high energy limit, relation (19) reduces to the approximation obtained by a modified

perturbation procedure, valid for strong coupling [5]:

I,=-n—-1-%-— (20)
K

where M, is determined from the power series in r

Vir) = Z My y(—1). (21)

i=-1

The problem of the Regge poles is considered in detail on the basis of the perturbation
approaches for weak coupling in paper [3]. Expression (19) is distinguished from the
corresponding equation for a Regge trajectory, obtained for weak coupling [3], only by
the sign of the potential.

For small k2%, when |k?/p?} < 1, the asymptotic behaviour of Qz) and R(z) is

4 #2 k MZ kZ i+1
R 1+ — - 1 ~ 21~V 3 ’ 22
'( " 2k2) r Q'( ¥ 2k2) (u’) @
and the equation of a Regge trajectory is now
_I(=1-1) [k*\'*?
jum 7 FTCEID VT @3
k sinnl r-n \u

This expression is distinguished too from the one obtained previously for weak coupling
by the sign of the potential. The investigation of the motion of the Regge poles in details
is analogical in the case of weak coupling [3].

3. Regge poles for Dirac particles

We now want to extend the results of the previous section to the case of a particle of
spin 1/2 in the central field V(r), described by the Dirac equation

[—iaV+Bm+V(r)—E]y = 0. 24)
The phase shifts, determined by the behaviour

l
Uy ——>const sin (kr—- 1;— +5,“.,), 25)
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in the case of a central regular potential satisfy the phase equations

d - s ,
I gy = —A Y []l(k")"nl(kr)tli§,1]2—lV(r) Lirg1(kr)—nyy 1(’\"‘)’&4;,1]2,
H+3(0) =0, (26)
where
) . Inkr
fesdr) = t8814.(r), m = \/ — Niwalkr), (27)

SE— E—m
k = Ez‘_' 2 s i o= / : 28
v " 3 VE+m (28)
In equation (26) the term AV(r)[j,1,(kr)—n;. (kr)t;1;,] describes the relativistic effect
of the spin-orbit force of Dirac particles [6], [7]. Introducing new unknown functions by
the relation

_ JkPnkr)+ 2%, s (kP)ny 4 (kr)

t =F+X, X = - , 29
e R L () @
we obtain
Fr)+2A7 g [ dxVo(x) (0] (kx)F{(x) + 220y *(kx)) = —X(r), (30)
(4]
where
al(kr) = n,z(kr')+,'12n,2+1(kr). (31)
The equation (30) is of the type
F(r)+G[F(r), r] = o), (32)
where

o) = — X —gh { dxVo()o X(kx),  GIFir), r] = g2~ | dxVo(x)a(kx)F2(x) (33)

and its solution takes the form (4).
In the approximation obtained by using first degree terms of g in the numerator and
denominator we get

- T V() T j2(kr) + A2, (k) Tdr

tip g3, (0) = s (34)

14 °.f° LA™ ikrnkr)+ Ay (kYo s (k)]

= T V) T er) 4 A7 ey Ldr
0

t_3(0) =

® (35
i+ g (A7 Yi- 1(kr)ji- 1 (k) + Ajikr)n (ker) ]dr
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The behaviour of the pole positions of S, in /-plane, as functions of energy is determined
by the equation

itg éli-},l == 1. (36)

In the first order approximation for Regge trajectories we obtain

i TV LA 70r) + 27 (kY Jdr+ 1+ | V) T2 ikhnkr) + 2 (ks (k) ]dr = O
4] o

(37)
for the states with the total angular momentum j = I+, and
i V() [A7YE (k) + A} (kr)Jdr + 1
0
+ fVv(nia~ Ji—1(kryn_ ((kr)+ 2jkryn(kr)]dr = 0 (38)
(Y

for the states with the total angular momentum j = /—1.

In the nonrelativistic limit, when E—m(2 = k/2m) the term AV (r){j, 1 (kr)—nyy ((kr)t,« |
can be neglected and equations (37), (38) are reduced to the nonrelativistic phase equation
for tg 6,. The corresponding equations for Regge trajectories are reduced to the equations
obtained in the previous section.

In the case of the ultrarelativistic limit, when E > m(i = 1), both terms in equations
(26) are of the same order. For potentials of the Yukawa type (12), using the relation

1
n(kx) = ctg n(l+3)j(kx)— é:i:;(?:;)jl—’(kx)’ (39)

and pole approximation for Q,(z), we get

2 2 2
aimP, (1+ :2%) . aimP, (l + ‘%) vt nl b amP, (1+ 2%;)
ctg m —e L
{+n+1 I+n+2 & I+n+1
2
amp,,(u ii)
rotgnied N Ky (40)
& 2 I4n+2 '

Thus, the Regge trajectories are reduced to a family of straight lines parallel to axis Re/:
l=—n-3. (41)

The behaviour of the Regge poles for intermediate energies can be investigated by
numerical calculations.
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4. Regge poles for a quasi-potential problem

The quasi-potential equation for scalar particles [8] of equal masses

.- - ©odq V[(p-9IT@4, P)
T(p, p) = V[(p—P)]+ J , (42)
Vgt +m? k*—gq*
and quasi-potential
. &Br e i@ F
Vip-p)1=2¢ — (43)

@n)? r ’
can be reduced to a differential boundary value problem of the second order in the mo-

mentum representation [9]. Expanding the total amplitude and the potentials in partial
waves

T(p, p) = ——; Z QI+ )f(p, p)P,( P ) (44)

1 - . *y
Z QL+ D)V(p, PP, (" ’,’), (45)
4npp pp

1=0

V(p,p) =

we find an equation for the partial amplitude

j Vi(p, q)fz(q, p)
J JiE+mt  K-4

f(p, p) = Vp, p)+ (46)

For potential (43) in the momentum representation equation (46) is reduced to the differen-
tial equation

flp, p) _ {l(l ) g

, p') = gd(p—p’ 47
dp? e \/p2+m2(k2_p2)}fz(p p) = g&(p—p) 47

with the boundary conditions:

dfip, p' ,
Pt -f%—”—) —(1+ VPP, P') —=>0, (48)

dflp 0 - ,
—d—;— +1p"* Vflp, p') =<0 (49)

Green’s function Gy(p, p’) = g~ 'f(p, p’) can be represented as a superposition

Gip, P') = Adp, pYU(p)V (P))+ B(p, PV (D)ZAP), (50)
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where
U(p)=p~' and ¥ (p) = p'*! (51)

are two solutions of the potential free equation (47). For the Wronskian of the solutions
U {p) and ¥ (p) we get

& adl ' au _ 20+1 52
l dp 'dp - ) 62

The boundary conditions (48) and (49) follow from the boundary conditions for the coeffi-
cients 4; and B;:

B(+00,p) =0, Af+c0,p) = const. (53)

The equations for 4,(p, p’) and B,(p, p") will be considered for the regions p > p’andp < p'.
In the region p > p’ Green’s function is chosen of the type

G(p, p') = A(p, P') = [%Lp)¥ (P)+ CLp, PV PV (D] (54)
where
v Bdp,p)  UP)
Clp ) = -~ . (55)
Alp, p)  7(p)
Similarly in the region p < p’
G{p, p') = Bi(p .p") [V (P)AP") + F(p, PY2p)%L(P)] (56)
where
n_ A, p)  VAP)
Fp,p) = T~ ———. (57)
B(p,p') %(D)
Introducing in the spirit of the phase-function approach the condition
dA(p, p') ., 4B(p, P) .
SR Ay () + ——— VUPYUP) = O, (8)
dp dp
we get the variable phase equation for F; in region p < p’
dF(p, p) 1 g 41 no=h2
—_— - C —— F(p, . 59
dp 21+1 \/p2+m2 kz_pzp( + l(p p)P ) ( )

An analogical equation can be obtained in region p > p’. At the point p = p’ for the discon-
tinuities of the coefficients A; and B; we find
1
20+1°
1

B{(p'+0, p)—Bfp —0, p') = ——. 61
{(p"+0, p)—B(p p) T (61)

Al(p,+09 pl)_Al(p"'Oa P,) = - (60)
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The boundary conditions for variable phase equations are
C(+,p)=0, F(0,p)=0. (62)

For the coefficients 4,(p, p") and B(p, p’) the boundary conditions can be determined by
the expressions (60) and (61):

, B(p'+0,p) (p) n_ Ap'=0,p) V(D)
C;(P,P)= ] o N ? Fl(p’p)= ' o ~
A(p'+0,p) YD) B(p'—0,p") «(p)

Analogical to the case of the variable phase equation (1) the solution of equation (59)
with condition (62) takes the form (4), where

p(r) = —p**, (64)

(63)

=21

1 g
G[‘P:(P), P] = 2+ 1 J‘\/m ' 12— x2 qa,z(x)dx. (65)
0

The functions G,(p, p') and S; may have poles only in the zeros of function D/(g, k). For
the first approximation of F, we get

1 2(l+l) dx -1

Fip, p) = _E . . (66

pP) = T e 21+1 mz o) - 9
D\/x +m x +

The equation of a Regge trajectory is determined by the condition

o0
r

1 gx 1
(1) (0) — .
Dl (g’ k)+Dl (g’ k)—1+2l+1j\/m kz_xz
1]

dx = 0. (67)

For negative k2 the integral in expression (67) can be evaluated, and, therefore, in
that case

1 m+vm*+ k2
+ ——=In e
dm2+i2 m—Jm*+ k2
Equation (68) is valid in the region k* < —m?. The branch points of the functions (68)
are k> = —m? and k2 = 0. For / = 0 the expression for g as a function of k2 is similar

to that obtained by the method of standard equation [9]. A more accurate evaluation of
Regge trajectories can be performed if we take the next order approximation for D,.

= -1

(68)

5. Conclusions

We have presented the method of formal series for calculation of Regge poles for
a wide class of problems. The partial amplitude is represened by the ratio of the power
series of the coupling constant, valid for strong and weak coupling. So far, we have
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calculated the Regge trajectories for an ordinary Yukawa potential in the first order
approximation, but the method can be applied in principle to obtain higher order approx-
imations and to generalized Yukawa potentials. The method of formal series is a generali-
zation of the method of Fredholm to the nonlinear equations. The possible applications
are numerous but we have considered Regge poles for nonrelativistic local potential theory,
Regge poles for particles described by the Dirac equation and a problem in quasipotential
approach. The applications to quantum mechanical potential problems are mostly connected
with bound states and resonances.

REFERENCES

{11 C. Lovelace, D. Masson, Nuovo Cimento 26, 472 (1962).

[2] A. Ahmadzadeh, P. G. Burke, C. Tate, Phys. Rev. 131, 1315 (1963).

[31 Y. 1. Azimov, A. A. Anselm, Sov. Phys. JETP 44, 686 (1963).

[4] A. A. Atanasov, K. 1. Ivanov, Acta Phys. Pol. B6, 129 (1975).

151 H. J. W. Miller, Physica 31, 688 (1965).

[6] F. Calogero, Variable Phase Approach to Potential Scattering, New York 1967.

[7] V. V. Babikov, Variable Phase Approach in Quantum Mechanics, Moscow 1968 (in Russian).
[8] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cimento 29, 380 (1963).

[91 V. C. Gogohia, D. P. Mavlo, A T. Filipov, preprint JINR Dubna P2-8812 (1975).



