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The application of Regge theory to high energy hadron-nucleus scattering is reviewed.
The usual formalism for scattering off non-relativistic nucleons in a nucleus is applied to
obtain momentum space expressions for multiple Regge exchange contributions. These
expressions are analyzed in some detail and applied to obtain the total and single particle
inclusive cross-sections. Using hadron-hadron scattering phenomenology as an input we
discuss hadron-nucleus scattering phenomenology for current energies (prap S 104 GeV/c)
and available nuclei (4 < 250). The applications discussed here are only the simplest ones;
hadron-nucleus scattering should allow many other tests of the theory not possible in hadron-
-hadron scattering. The Reggeon calculus approach taken here is more convenient for explicit
calculations but Iess intuitive than paraflel discussions based on the space-time picture in the
multiperipheral model or on the parton model. The latter are discussed briefly in an Appendix.

1. Introduction

In these lectures 1 will review the application of Regge theory to high-energy hadron-
-nucleus interactions. The Regge model (with its close relative, the multiperipheral model)
provides a very compact framework for understanding the basic features of high-energy
hadron-hadron interactions. It also has a firm theoretical grounding since it satisfies the
requirements of analyticity and both direct (s)-channel and crossed (¢)-channel unitarity
(and in the case of the multiperipheral model has a foundation in “soft” field theory). For
these two reasons it seems very important to know if it can also give a successful descrip-
tion of hadron-nucleus collisions where different time scales are involved.
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The theoretical tightness of the model is one of its most attractive features. In principle,
hadron-nucleus scattering is determined by the Regge model for hadron-hadron scatter-
ing and some knowledge of nuclear structure. Therefore, a knowledge of hadron-ha-
dron Regge phenomenology should enable us to understand completely hadron-nucleus
scattering. If this is not the case we shall be in a quandary since the model is the only
available one in which full satisfaction of analyticity and unitarity is built in from the
start.

The qualitative predictions of the Regge model for hadron-nucleus scattering are not
too difficult to obtain (particularly for asymptotic energies). We shall see in Section 5
that they are not manifestly inconsistent with present data. However, we are now reaching
a stage of greatly increased experimental knowledge (particularly at finite energies) and
more detailed calculations with the model are in order. I hope this review will be of some
use to people who wish to confront the model with the data. Real calculations often in-
volve a certain amount of technical details as is often the case with a rather complete
model. While this can make life difficult for us, it should not be allowed to detract from the
attractiveness of the model from a theoretical point of view.

In Section 2, a general multiple scattering formalism is developed. This is used as the
basis for Section 3, where the double scattering diagram is studied in detail in the Regge
model. In Section 4, multiparticle production is discussed. Then in Section 5 we make use
of our knowledge of hadron-hadron phenomenology to discuss the general phenomenol-
ogical implications of the Regge model for hadron-nucleus collisions at current energies
(Prev S 10* GeV/c) and available nuclei (4 < 250).

In the Appendix we study the space-time picture of collisions in the multiperipheral
model which is the prototype of models with Regge behaviour. This gives a simple intu-
itive picture for a number of the results discussed in the main text.

We conclude this introduction with a review of the Regge model for elastic hadron-
-hadron scattering. We then introduce the application of the model to hadron-nucleus
scattering by discussing qualitatively the elastic scattering of an incident hadron on the
various nucleons in a nucleus as it passes through it. Although this example will be seen
to be totally unrealistic, it will serve to introduce some ideas used later.

1.1. Regge model for hadron-hadron elastic scattering

For hadron-hadron elastic scattering the Regge-pole exchange amplitude [1] is given
by (Fig. 1)

A pn (s, ) ~ ﬂhl(t)ES“("ﬁhz(t)- (1.0
- e~ 4 g
¢ = m (1.2)

and T = +! is the signature. We will be discussing high-energy scattering so usually the
Regge trajectory will be taken to be the Pomeron with

ap(t) = op(0)+ap(t) = 1+4 ¢, (1.3)
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In the “laboratory frame”,
ph1 = (ph|09 Oa Oa Ph;z)a
phz = (mZS Oa Os O)a

Ph, = (Ph,0 4> 9y> Phys)s (1.4)

h ph

2

Fig. 1. The elastic hadron-hadron Regge exchange amplitude

we have
s = (Ph,'*'th)z = 2’"2Ph,o+mf+m§a
’ I ? 1
= (Pm_l’h,)2 = (Phlo“Ph,o)z“‘l%"(Ph,z“Phlz)z = —Q%’*‘O(—S)o (1.5)

The invariant momentum transfer can thus be expressed solely in terms of the trans-
verse momentum transfer gy = (q,, q,). Using (1.5) we can rewrite (1.1) as

,gjhml(s, 1) ~ gﬁh!(O)ﬁhz(O)sa(O)e—(h+h+a’ In s)qu, (16)
where we have parametrized the Regge residues as
Budt) = Bn(0)e™ (1.7

and neglected the ¢ dependence of ¢ which gives a small r-dependent phase.
An interesting physical picture for scattering by Regge exchange can be obtained if
we consider the Fourier transform of Eq. (1.6) in the variable g

el

. o
Ay n,(8, b) = ZL_J d*qre-" Tl y 0, (5, -q9

, 2(0) ~p2
iBn (005" ( b ) (1.8)

T 2y +7,+4 Ins) 4y, +7,+2 Ins)

The quantity b is the impact parameter of the collision. We can interpret (1.8). by
saying that the incident hadron sees the hadron at rest as an object with a Gaussian matter
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density of width 24/ y1+7y.+a Ins. Its size thus increases with energy. However, the
density decreases as (y, +y,+a’ In s)~* as the energy increases. We can thus picture the
hadron as shown in Fig. 2. As a check of this we note that

soi ~ Im (s, 0) oc s

a(0)

o« {(rR?) o ( >
Ins

) i

Fig. 2. Front view of a hadron

1.2. Elastic rescattering

As an application of the above simple Regge-pole model, we consider the elastic
rescattering of an incident hadron as it passes through a nucleus. Since we are discussing
high-energy scattering and nuclear binding energies are small, we expect that we can
treat the nucleus as a collection of A4 independent nucleons. Thus as a naive first guess we
might expect that

Ona X Aoy o R3O (1.9

where R now is the nuclear radius and the last step follows from the approximate const-
ancy of nuclear densities. In other words, we would have

Ba = ABx (1.10)
where By in the Pomeron coupling to a nucleon
ﬁN = ﬁp = ﬂn'

However, this totally neglects the facts that the nucleons have a finite size and that the
nucleons at the front side of the nucleus screen those deeper in [2]. To discuss this effect
we need to distinguish two cases [3].

Tube of radius
VY, +v,+alns'

SIS YIS SIS SS7.
]

b

Fig. 3. Side view of nucleus (Va'lns <R)
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() Vyut+yn+a Ins < R In this case the nucleons are much smaller than the nucleus.
We can picture the process as shown in Fig. 3. The incident hadron at impact parameter b

interacts with nucleons whose centres are within a tube of radius v’ Yo t+yn+a In s, since
in each collision it is scattered through only a very small angle!. It can interact therefore
only with those nucleons within a mean free path 4 of the front. Therefore, we have

AR?
Ona € 3 Aoy o< R (Regime (i)). (1.11)

(i) \/ yatynto’ Ins> R. Now each nucleon as seen by the incident hadron appears
much larger than the nucleus (see Fig. 4). On the other hand, due to Eq. (1.8), they are

Fig. 4. Front view of nucleus (Va'Ins> R)
also very transparent. Thus the nucleus appears to be a collection of very large and diffuse
overlapping disks. Because of the transparency, there is now little screening and
Opa ~ Aoy ¢ R® (Regime (ii)). 1.12)
This last result is disturbing since one would expect that at least for large nuclei

we would have a geometrical cross-section oy, oc RZ. We first note that for accelerator
energies we will never be in regime (ii). We have

v, & 1.7GeV-2, o ~ 0.25GeV-?, Ins = 8 (at ISR), (1.13)

SO

V2t Ins & /5 GeV-2 ~ 2 GeV?
while
R = RyA'? =~ 1fm A3 ~ 5 GeV-! 413, 1.14)

More importantly, there is good reason that we should not believe the conclusion (1.12).
Let us consider the elastic cross-section

1 11 2| 2y|2 o 1.15
Or oy, ~ — — | dqiled s, —qp)© oc— — .
hib, l6n SZJ‘ ! g n( q7) i +7,4¢ Ins ( )

! We have [gr] ~ 1/\/1—6: and pp; ~ s, so tan 6 X |gr/|paz! is very small for large s.
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and so in regime (i)
Ohn, € Ohtps O Oy < ohb. (1.16)
Therefore inelastic processes must be very important in this regime and rescattering of the
produced particles must also be taken into account. This will be one of the main goals
of our study.
We shall find [4, 5] that inelastic processes become important at energies on the

order of
Pn: & Ru?, 1.17)

where p? is a typical hadronic mass. This is well within regime (i) so Eq. (1.11) is not
generally valid. In the remainder of this work we shall obtain the correct behaviour of the
total cross-section and other interesting quantities in regime (i). We shall not return to
régime (i), since it is not experimentally accessible at present.

In our discussion of inelastic processes we will make frequent reference to the multipe-
ripheral model which is the prototype of models which produce Regge poles. A typical
inelastic process is shown in Fig. 5a. The chief characteristic of the model is that the mo-

P,
f;__—pz @ T
; disc, Acc 3 | -
. n=2
P, " "
(a) (b)

Fig. 5. a) Mutltiperipheral production process, b) generation of Regge pole through unitarity in multi-
peripheral mcdel

mentum transfers ¢; are limited. These production processes then lead to Regge behaviour
of the elastic amplitude as shown in Fig. Sb. The model is discussed further in the Appendix,
but for a complete treatment we refer the reader to the excellent review article of Baker
and Ter-Martirosyan [6].

2. Multiple scattering formalism

Before turning to the study of inelastic processes, we wish to develop the rescattering
phenomenon in a more formal manner. This formalism will serve as a basis for our later
work. We represent a scattering from a single nucleon via Regge exchange by Fig. 6a.
Similarly, a multiple elastic scattering from » different nucleons is represented by Fig. 6b.
The full amplitude is a sum over all such diagrams,

A (n)
Ay = Zl Ay (2-1)
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We shall regard diagrams such as those in Fig. 6 as Feynman diagrams where the Regge
exchange is given by (1.1). By including all possible diagrams we will be assured of ob-
taining amplitudes which satisfy the contraints of unitarity.

(1
AV 2

hA

(a) (b)

Fig. 6. Multiple elastic rescattering diagrams. The heavy line represents the nucleus 4 and light lines
represent hadrons

Patq

Fig. 7. General n-fold rescattering diagram

Let us consider a general n-fold scattering (see Fig. 7) of which Fig. 6b is a special
case [7, 8]. Following the conventions of Bjorken and Drell [9] we have?

A

A
1 d4 i 4 4
i = ;{!H J(Z:; H 20 ; @n)*s (pA— Z pi) (2m)

i=1

*( pat " 4
bat4q D: qi (A—n)!n!
i=1 i=1

gy 7 ]
§ (i )"(lr) (ir’) , @2

(—i(p? —m>+ie)) T[] (—i((pi+4g)* —m* +1ig))
i=1

=

1

1

1

where the combinatorial factors arise from the different ways of choosing the »# nucleons.
It is convenient to introduce momenta k; defined by

P4
L= = +k,. 2.3
= @3)

28 = 14i(2n)* 0*(Zp;) .
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We shall always work in the laboratory frame” where the nucleus is at rest
P4 = (M,0,0,0),
Pn = (Pr» 0,0, p;) ~ (9, 0,0, p), .4
where
M = A(m— &) (2.5

with m = my and & the binding energy per nucleon. The propagators in (2.2) then become

pP—m? = —A*+2 %" kit kP~ — A% 4 2mkgg—k?
and

(pit+q)—m* ~ —Az"i‘zm(k’oﬁ"Iio)"(zi‘*‘a;)z, (2.6)
where

Ar=m—(m—-EP*=2mé&
and in the final forms we have treated the nucleons as non-relativistic,
kip ki, <m, qp<q,<m &<m 2.7

We expect the vertices I" to be large only in this regime. The amplitude ¥ depends on
variables such as®

5, = (ph+pg)2 = m§+m2—A2+2mp+2ki(ph+ ILAA) +k? ~ 2mp = s* 2.8)

and
M? = (po—q) = mi+q7—2p(qi0—4qi:) ~ mio—q} +2pq,.. (2.9

We now suppose that all the important singularities in the virtual nucleon masses
[pZ, (p;+q))?] reside in the explicit propagators in (2.2). This, along with (2.7) means that
we are essentially treating the nucleus as a collection of precisely A non-relativistic nucleons.
We see from (2.8) and (2.9) that ¥ ™ then does not have any significant dependence on k;o
and g;,. The integrals over these variables can thus be done explicitly.

We first consider the g,, integrals. Each propagator has a singularity in the lower
half plane

A4 (k+q) —ie
2m '

Gio = —kio+ (2.10)

3 The energies s; ~ s* are those available for particle production in the model. Terms of order pkio
are neglected in the last step. This neglect of Fermi motion is reasonable at high energies where there is no
rapid variation of ¥ in s;.
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We can use the momentum conservation constraints

.:Z“,l =0, ) k=0 (2.11)

i=1

to do, say, the g, integral, which gives rise to a denominator
n-1
(pu + Qn)2 - m2 +isx — Az + 2m(kn0 +4qo0— z in) - (kn + an)z (2'12)
i=1

which has singularities in the upper half g,, plane

n-1

A +(kp+4,)* —ie
dio = kno+go— Z xo 2 1 . (2.13)
m
k=0
k#i
(9
Eq. (213) l integration
contour
o X e / L J
X

\Eq.(2.10)

Fig. 8. The g0 complex plane

The situation in the g;, plane is then as shown in Fig. 8. We perform each g, integral by

closing the contour in the lower half plane encircling the pole of (2.10). Each propagator
gives

i 2

2 2 N A

(p;+g)>—m*+ie) 2m

. (2.14)
A2+ (k+qp)?
Zm

qic = kot

ori =1,2,...,n—1, and

n

2 2 > - A . -
(pi+qi) —m°+ig 2m _nAZ___zm z kiO_

i=1 —21 (ki+q)°

i=n.-1

The k,, integrals can be done in a similar manner using (2.11) to eliminate k,,. Each
variable k;, (i # n) has one pole in the lower half plane (from p?—m?+ig) and in the upper
half plane either one pole (for i = 1, ..., n—1 arising from PE—m?+ig) or two poles (for
i=n+l, ..., A arising from p?—m?+ie and Eq. (2.15)). Closing each contour below

gives
A
GG @19
domivie) \am) T AL, -
pi —m” +ie 2m AA? Zk.z
i=1

i=1
i
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Substituting (2.16) and (2.15) (with the k%, taking on their given values) into (2.2)

we have

-~

d’q;
(m _ ' (n)
d (A n)'n‘H J(anZmH J (2n)32m v
nﬁn

r r

—— (2.17)
AA*+ Y (ki+q)
i=1

—+
s
=4

where g; = 0 for i > n and (2.11) is implicit. We see that doing the energy integrals has

put all but two of the nucleons on mass shell.
The last two factors in (2.17) can be identified with the non-relativistic wave function
of the nucleus. To see this we imagine maesuring the locations of the 4 nucleons using

9, Q --- Qs

Fig. 9. Hypothetical scattering process

a weak probe. In momentum space this corresponds to the process in Fig. 9. The amplitude
in terms of the non-relativistic wave function is given by

= d’p;
A!H J an? w(p)v*(pit+q)), (2.18)

qi=0'

where

N

i
A

This process can also be calculated using the relativistic formulation of (2.2)

A A
[ d (il) (i)
HJ(Z)‘*(’) ( ZPL)A — .
H (—i(p?—m*+ie)) (—i((p; + q;)* —m* + ig))

i=

Following the same steps which led to (2.17) we obtain

r I
‘ (2.19)
H j @ny’ (2'") 2, f k2 |\ 44?4+ i (ki+q:)’
i=1 i=1
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Inserting the Fourier transforms*
A .. A
w(pi) = 1:[1 jd3xie_lp.~-xiw(xi)53(._zl xi)

in (2.18) and comparing with (2.19) gives

A A

r ——— =JCem)* 4! H Jd3xie-“5'§-'«p(x,.)53 (Z xi> (2.20)
Ad*+ Z k? . .

i= i=

and

i=

A A
r — e s
= | f d3xie’<kf+'ﬁ>'*-'w*cxi)és(E (xi))'
AA® + .Zl (ki+q)> i=1

We now obtain from (2.17) and (2.20) our basic formula [7, 8]

A-1
o= (A— n)'n'HJ(Zn)ﬁl ves*, 5:>H J Bt ()2 (2.21)

If V™ does not depend on g,y significantly®, the g;; integrals can be done trivially
using

n n—

- TN . -
div " i1 = qir(Xi— X1+ g1 X1

i=1 i=1

to obtain

(2n)2"52(x1T_an)52(x2T_an) 52(xn S1T = X51)-

Writing X,r = &, .v¢ have [7, 8]

oM = dq;. V(")(S* q:,) dz.e" =%
T (- n)'n' J(Zn)(z my ‘
i=1

x | d2be‘qT"’@(E, 203D, 2,5 .3 B, 2,), (2.22)

where we define

H [ @x59(xys s x )12 = 0(x4, ..y X,). (2.23)

j=n+1

4 The delta function fixes the centre of mass at the origin, which is necessary since translation invari-
ance has already been taken into account in (2.17).

$ The condition is that the Fourier transform 7 (s*, b;) be concentrated at ; values small compared
to the nuclear size (regime (7)).
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Equation (2.22) can be rewritten by dividing it into pieces, each of which has a definite
ordering of the z;. Assuming symmetry of ¥™ under interchange of the ¢,, we obtain

n—1 © 4]
Al dl .
—n). T m
i=1 -0 21
| dzlniGn-i) | d2belir '7’9(3; z), (2.24)

ZIn-1

where I, = gq,, and [, = I,_; +4q,,. The exponential factors allow the /; contours to be
closed in the lower half planes yielding [8]
n—1 ©
2

M?
: k- ntl LT : (n)
(A—n)!( 25*) > disCyy,z ... disCyy, 2V

=1 (M)

m _

oc

jd J‘dzzexp[( zpmh)(z1 zz)]...

E41

X J dz, exp[ )(z,, 1= ,,)]szbe“;i";g(-l; ) Zy), (2.25)

Zp-1

where M ? = (p,—1,)>. This has the physical interpretation of a multiple scattering process
with inelastic intermediate states as shown in Fig. 10. All the scatterings take place at the

(b,z,) (b,z,) (b,z,)
2
M,

Fig. 10. Multiple scattering process corresponding to Eq. (2.25)

same impact parameter as we argued should be the case in Fig. 3. We note that if cor-
relations between the nucleons are neglected we can write

Q(xla ey xn) = I=-Il Q(xi), (2.26)

where o(x) is the single nucleon density.
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As a simple application of this formalism we consider elastic rescattering as shown
in Fig. 6. For n = 2 and g, = 0 we have, starting from (2.21)

A(A—l) d3q P .
d(Z) = ) _’.(2715)32117’1 V(Z)(S*y ‘11:) dsxl d3x28‘“ s z)Q(xl)Q(xl), (227)

Fig. 11. Elastic contributions to ¥(®

where (see Fig. 11)

VD = L [A(=GD) (— ) (- T

Mi—my
i ind 2 -
+ = i g2 —if(s* a(~q12)\ (5 2 2’ 2.28
M —m2+ie [(iBx(—a1)) (—i&(s*) ) (@iBu(—a7)] (2.28)
where
M} = mi—qi+2pq,;, M* =mi—gi-2pq,,. (2.29)

If the singularities of the nuclear form factor in ¢,, are neglected, the q,, integral can be
done simply by contour methods. Since V'® behaves like g1,%, a large semicircle gives no
contribution and we can close around the right-hand pole obtaining®

_AU-D i (dr

d(l)
2 2s* ) (2n)?

[BuE(s*) ™ HTB(q 20T (2.30)

where ¢ is the Fourier transform of the single nucleon density. This is the usual elastic
absorption formula and it has the behaviour characteristic of a Regge cut’:

a) Asymptotic behaviour ((s*)**¥~/In s*)

b) Sign opposite to pole term &V (—i for & = i). (2.31)

S The same result can also be obtained starting from (2.25) which does not ignore the form factor
singularities. Only in the elastic case can we get away with the neglect of these singularities —see Section 3.

7 To avoid possible confusion, we note that since Eq. (2.28) has only pole singularities, this is not
the usual AFS cut which vanishes. See Section 3 for further discussion.
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It is straightforward to compute the n-fold scattering diagram in an analogous manner,
In the limit of large 4 the optical model result is obtained from (2.1) [8]:

o

Ay ~ 2is* J‘dzbeﬂ”r'g[l —exp (% BE(s*)y O 1A J dzo(b, z))] . (2.32)

-

Hence oy, is proportional to R? for large A as alleged in Section 1.

3. Inelastic rescattering in the Regge model

Let us analyse in detail the double-scattering diagram (Fig. 7 with » = 2). From Egq.
(2.21) with g = 0 we have

» 3
a® ZAAZD_20 poyen g g
2 (2m)*2m A
P i > A“l
x [ dx e ™ [ dxe” " T [ dxjiplxy, ... x )17 3.1
J=3

We neglect correlations between the nucleons and use (2.23) to obtain

AA-1) [ dg p g
s == I Gtz V6 4 @) (32

Due to the presence of p the integral will be strongly damped for |g| > 1/R%. Since (see
Eq. (2.9)
M? = (p,—q)® =~ mi—q”+2pq., (3.3)

we have

—_ S — A —— & —— <€ | (34)

8 The momentum cut-off here is controlled by 1/R and not k¢ (the Fermi momentum). While it is true
A

there are nucleons in the nucleus in states / with momenta of order &, o(x) = (1/4) Z = |y;|* has Fourier
i=1

components only of order 1/R. The two-particle density x(x,, x,;) has Fourier components of order kg.
These correspond to anticorrelations (Fermi principle) and are of weight 1/4 with respect to the uncorrelated
term since they involve only nucleons in the same state. Their total contribution to (3.3) at fixed M?*(q;)
is thus of order (1/4) (k%) compared to (1/R)? for the uncorrelated term. Using k& ~ A/R® we see that
crudely they are smaller by a factor 1/kgR = 1/4'/2,
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The nuclear size thus has the very important effect of restricting us to a regime where Regge
exchanges are expected to dominate in ¥® [4, 5]. We therefore write (see Fig. 12)

V® = B0 Ei(sH™ ) s OF (M, 1), (3.5)

Fig. 12. Regge form for the double-scattering diagram

where F;; is the Reggeon-particle scattering amplitude (the labels i and j will often be
suppressed). Substituting in (3.2) gives

A(A-1) a @) — o~
2 = 7 | dM? | dPq g ()T HOTIFUME, ) (Bu(D@ - 1), (3.6)
4(2m)
where
Mz_mz 2
tx —gi~ —g2 — | —2). 3.7
q q, ( 2p ) 3.7

As a check of the general structure of (3.6) we note that the gy integral will give
something of order R-2 due to g where we assume that the nuclear dimension is much

greater than typical hadronic dimensions (i. e. the ¢ dependence of F, a, 8y can be neglect-
ed). Thus

@

1
P o A? = B2(0) (s*)*= 1 J dM*F(M?, 0)

-

OCSl*(AﬁN(S*)a(O))(Al/sﬁN(S*)a(O)) f dM*F(M?, 0).

The factor ABn(s*)*® is due to the first interaction which can take place with any of the A
nucleons, while the factor 4''3 B(s*)™® is due to the second interaction which can take
place only with the approximately 4'/3 nucleons with the same transverse coordinate as
the first struck nucleon. The integral measures the total weight of elastic and inelastic
diffractive states propagating between the interactions.
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Further insight into the physical meaning of the double-scattering diagram can be
gained if we consider its contribution to the total hadron-nucleus cross-section. This is
obtained by taking the imaginary part or, equivalently, according to Cutkosky, by summing
over all unitarity cuts which divide the diagram into two pieces. We therefore can write

1
soi ) = % [(disc @), +(disc #P), +(disc #?P),], (3.8)
g
(discA™) (disc &™) (discA™),

Fig. 13. Contributions to the various discontinuities of #/(?)

h*
-g E =
— LI
0 Y 0 Y

(disc A ) (disc A’ ), (discA?)
(a) (b) (c)

Fig. 14. Examples of production processes and rapidity distributions (the 4 nucleons excluded) contributing
to [disc /)

where the (disc &'?), contain all terms where i Reggeons have been cut (see Fig. 13).
An example of a specific production process contributing to each of these discontinuities
is shown in Fig. 14. Contributions to the cut through no Reggeons are generally diffractive
dissociation processes. Contributions to the cut through one Reggeon include absorbed
multiperipheral processes as well as the basic process of Fig. 5a. Contributions to the cut
through both Reggeons are what would normally be called double-scattering processes.
After a scattering off’ one nucleon, one of the produced particles scatters off a second
nucleon. The double-scattering diagram therefore includes the contributions of many
distinct production processes. The outstanding feature of Regge theory is that all these
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processes are related to each other in such a way that unitarity is satisfied (this is most
clear if we imagine all diagrams to consist of sums of Feynman diagrams [10]).

We now turn to a detailed analysis of the double-scattering diagram. The M? contour
in (3.6) cannot simply be closed around the righ-hand (or left-hand) singularities in F(M?, ¢)
which arise from unitarity in the Reggeon-particle channel. This is because there are

» »
Sings in §—} M2

P 4

LH sings in F
\\ “ as*/ RHsings inF
\\\._ —"

3

r»-—Sings inp

Fig. 15. Singularities in the M2 complex plane. The dotted line is the integration contour used in obtaining
Eq. 3.11)

additional singularities in M? arising from the g, dependence of g (see Fig. 15). Therefore
@ cannot be expressed simply in terms of discy:F (or discy:¥ ‘?) and it is most con-

venient to evaluate the contour integral directly®.
Let us choose a number A such that

1
Ag— but As*> mi 3.9
mR

This will generally be possible for high energies. Then for |M?|/s* < A we are in a regime
where

1
MZ_ 2 o) —
| my|/2p < R
and t & —g2. The only M? dependence in (3.6) then occurs in F(M?3, ). Let us consider
Az
[ aM*F(M?, 1). (3.10)
— As*
Using Cauchy’s theorem the integral can be rewritten as (see Fig. 15)

Ase

| aM? disc,:F(M*, )+ | dMP*F(M?,%). 3.11)
Mo? |M2j=2se

? An alternative approach is to start from Eq. (2.25). Then only the discp2¥(® is involved but
a complicated nuclear “form factor” occurs.
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Since As* » m? we can use the triple-Regge form for F in the second term in (3.11) (see
Fig. 16)!'9:

[e—-in(ak(O)—al(t)a,-(—t)+Ti_c ‘Tk] o
Fi(M?, 1) ~ By(0 = (MO HOTE O (1. (312
:j( ) ﬂh( ) —sin 7((&,‘(0)—(1;(!)'—&](0) ( ) g;k( ) ( )

Fig. 16. Triple-Regge limit of Fj;

Hence the second term has the behaviour (s*)™*@ =M ~-u®O*1 which when inserted in

(3.7), gives a behaviour (s*)™©®. It is therefore a contribution to the renormalization of
the a;, Regge-pole reside due to nuclear rescattering. Breaking the first integral into two

parts at some A (m? < A < As*) we obtain

A As*
[ dM? discyoF (M2, )+ | dM?[2iB(0)g;u(t) (M)~ a0 -2i1)]
M2 A

g ) 5 Aax(O)‘Fl—a;(l)—aj(l)
= 2i dM*1Im F;(M~*, t)— 0)g; .(2
l[ J‘ m _p( ) dk(O)'f‘l*'di(t)—'dj(t) ﬂh( )g ;k( ):]
M02

(is*)ak(o) + 11—z () —a;(t)

" 00+ 1 — o () —at)

Bu(0)g:;i(1). (3.13)

The last term is again a residue renormalization. Hence we can write (3.7) as

A A "1 -3 1y~ 1 ~
= iﬁtc.—c;@*f" B — )

1 4 i , Azk(0)+ 1—ai(t)—ay(t) ©
- - — 0)g;; ) (3.14
x — [ j dM* Tm Fy(M*, 0= = D=0 Bu( )guk(t)] (A (. (3.14)
Mo?

where 1 & —g2.

1e gtrictly speaking only part of the triple-Regge limit of V(2 is given here (see Ref. {11]). This point
is discussed further below (see Eq. (3.22)).
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Let us discuss the two terms in Eq. (3.14) successively. The first term has the behaviour
(2.31) and is the standard Regge-cut contribution (for an excellent review see Ref. [6]).
The quantity in brackets

1 r 5 ABO)+ 1 = ailt) = ay(r)
N = — dM?* Im F, (M?%, 1)— 0)g;; ‘
Mo?

is the subtracted sum rule [12] for the fixed pole residue defined by Gribov [10].

It is interesting to ask under what conditions this term can have the elastic (Glauber)
form of Eq. (2.30) since empirically it appears the Glauber formula gives a rough fit to
the total cross-section data. The elastic contribution will dominate if Im F(M? 1)
~ nd(M?*—ml) Bi(t) (i. e. diffractive inelastic excitation is small) and the subtraction
term is negligible. The latter is true if o, (0)+ 1 —a(t)~a;(¢) <O and/or g;; is small.

These conditions cannot be met if F(M?2, t) is constructed only from planar Feynman
diagrams, since in this case the cut vanishes identically due to the AFS cancellation mecha-
nism [13] (see Appendix). The simplest planar graph is shown in Fig. 17a. It gives contribu-

A A
{a) (b) (c)

Fig. 17. Planar Feynman diagrams contributing to ()

tions to Im F coming from cuts of the type shown in Fig. 17b. In addition to the elastic
pole there are inelastic contributions coming from cuts through a finite number of rungs
of either ladder. The latter are negative and exactly cancel the elastic contribution in (3.15)
(see solid line in Fig. 18) [14]. For this diagram the discontinuity of the forward Reggeon-

Fig. 18. Contributions to Im F(M?, () from planar graphs

-particle amplitude F(M?2, 1} is not positive definite so it cannot be the whole story. To
restore positivity other diagrams such as Fig. 17c must be included. If we assume that the
series of all ladder diagrams in the hh channel, of which Figs 17a and 17c are the first
members, produces a Regge pole o, and satisfies positivity in the triple-Regge region,
we obtain a picture as shown in the dashed line of Fig. 18 [15]. If ;(0) = a;(0) = #,(0) < 1,
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the fixed pole residue must vanish identically due to an exact cancellation between the
integral and the subtraction term. The subtraction term thus has a weight equal to or
greater than the Glauber term and is therefore not negligible. Therefore the approximate
validity of the Glauber series at current energies does not imply the dominance of planar
Feynman graphs!!. On the contrary, it means there must be significant contributions from
non-planar graphs. Diagrams such as Fig. 10 with only elastic states represent dispersion
integrals (see Eq. (2.25)) and should not be confused with planar Feynman graphs'2.
The second term in Eq. (3.14), which contains the remaining part of the M? integral
in (3.6) as well as the second terms in (3.11).and (3.13), gives a contribution to the nuclear

ay

Fig. 19. Nuclear Regge residue

Regge residue (Fig. 19). It is difficult to evaluate, since the longitudinal component of
the momentum transfer g, cannot be neglected. Let us attempt to discuss it qualitatively,
however.

As a simple model we take the triple-Regge form (3.12) for F and compute only the
contribution to (3.6) arising from the singularities in F,

O

JAA-1) o () — N
AP i ez dm? J‘d‘I%Eifj(S*)m“H O Im Fij(M2a 1) (Bu(E(—1))*
Mg?
o«
2 R2M2
x ¢ sz(s.,)za(O)— I(MZ)ak(0)+ 1-ai(0)=a;(0),~ 25
R
Mq?
Y
A2
~l o = y(a1(0) + 1= ay(0)~ a;(0)) ,— (Rme~¥) *\2k(0)
~ [c RzJ‘dye e 2] (s*)%, (3.16)

where we have introduced

2 m2 Y-y
M =78 N p=ie (3.17)

12 The suggestion in Ref. [16] that the planar dual model might provide a good approximation is
untenable for these reasons.

12 The decomposition of F into contributions from planar and non-planar Feynman graphs was
made only for illustrative purposes. I do not believe it has much utility since we do not have a specific
underlying field theory for stros interactionng.
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and assumed the simple form [9(¢?)]* = exp (—¢*R?). The variable y can be interpreted
as the rapidity of the produced particle which undergoes the second scattering which gener-
ates the triple-Regge contribution (p’ = (m/2) ¢’ in Fig. 14). We can interpret the integrand
of Eq. (3.17) as giving the probability that the rescattering occurs for a particle of momen-
tum p’. It is plotted in Fig. 20 for the case #;(0) = a;(0) = %(0) = x(0) < 1. We see that it

0" nem Y y

Fig. 20. Rescattering probability as a function of rapidity y of rescattered particle

peaks for y ~ In Rm. In this case rescatterings are restricted to particles of momenta
p' < m*R. For momenta above p’ & m?R there is only the simple multiperipheral process
giving Regge behaviour in the energy p/R across the chain. For momenta below p’ & m*R
there are complicated rescattering processes, the simplest example of which we have just
discussed. If these rescattering processes lead to a strong enough absorption we can expect
a geometrical amplitude proportional to R? for these processes'®. Therefore we have for
the pole contribution [16],

P a(0) )
tot
SOh4 & (;2—1!?) R (3.18)
for a(0) < 1. This is smaller than (1.11) which would give
1

Oy p
6% o —e Asoyy < [ — | R2.
R m

The reason is that the dominant rescattering is that of relatively stow produced particles
(p’ < p) rather than that of the fast leading particle as in the simple elastic rescattering
model. The absorption is greater since the low-energy cross-section is larger [«(0) < 11].
Empirically, the difference between the two formulae will be insignificant since a(0) ~ 1.

We conclude this section by considering a more sophisticated example of Regge
residue renormalization. It will clarify a number of technical points including obtaining
the correct phase &, for the power (s*)*™ which was not obtained in Eq. (3.16).

We consider the following simple forms

1

~2e>2N -
2°(q") (TR (3.19)

13 This may not be the case for reasonable A4, see discussion below Eq. (5.12).
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and
Fy(M?, 1) = Fy(M?, )+t Fy(— M2 ), (3.20)
where!4

£s*

dM’?

. 1
P50 = 2= | s ¢

A

M2y -a-a0p (o) giiu(?)- (3.21)

The expression for the “signatured” amplitude F is a dispersion relation which includes
the region where the triple-Regge form (3.12) holds. For A < M? < &s* we have

Ba(— M2y
—sin n(oy —o;—a ;)

ak ai—aj—I I
ST (e

Aau‘ a;—aj—TI
Tz Z — B~ MY (4, (3.22)
I=-1

The full amplitude.can have no singularities for integral o, —a;—a; since these do not
correspond to physical particles. The second sum contains “fixed poles” (which contribute
to Eq. (3.15) for I = —1) cancelling these singularities for negative integers. The first sum
contains terms which contribute to Regge residue renormalization and cancel these singular-
ities for non-negative integers.

The integral (3.2) can be done explicitly by closing the contour in the lower half plane
(op—o—a; < 1):

j’:(s*)as tay (S*)tte +ay

5%

A(A-D (d*qr [ i [dM’? o 1
2) . vV L M'2 A=A oy
id 2 _[(2702 n ) 2s* (M) 2ina o (M
A R /RT+R I
2p
1 N 1 wyo o
+ Zn;Fij —2ip — R — | BuginBREE sy (3.23)
T
where
1 1
E =} +41.

!4 This example is discussed in Section 6.3 of Ref. [11]. We take 7,775 = -1, since otherwise the
contribution to (3.2) vanishes.
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For o, —a;—a; < —1'° the integral is well behaved at the lower end point and using (3.22)
we have

Vi
—isinz(ak—~ai—zxj)

oI = (mRT)zs‘rw—ak

A(A-1) [ d*q; Ry
4m (2m)* R*| —sin n(e,—o;—a;)

T
cos 3 (ot —o;—a))

. mR xtaj—ax
—smn(ock—ozf—-ocj)( v

| I .
+ - —— +0 ( ):] ﬁhgijkﬁr%lfif PG
T ak"af—aj ERTm
+Regge cut subtraction term. (3.249)

The first two terms have the phase ¢'”?* appropriate to the Regge pole behaviour (s*)™,

The third term cancels the singularity in the first two terms at ap—o;—o; = 0. (Only the
value of its singularity should be taken seriously, since its non-singular part depends on
the artificial cut-off parameter ¢ and will receive contributions from M’? > es* in general.)
Thus this contribution to the Regge amplitude is perfectly well behaved!®. It also has the
characteristic behaviour (s*/mR)*f(R) discussed above Eq. (3.18). One should keep in
mind, however, that the triple-Regge contributions give only part of the residue renor-
malization. There can be significant contributions coming from M? > es* in ¥'‘® where
the triple-Regge form does not hold.

4. Multiparticle production

At the beginning of Section 3 we discussed the contribution of the double-scattering
diagram (Fig. 12) to the total hadron-nucleus cross-section. One way to obtain the contri-
bution is just to take the imaginary part of Eq. (3.6) or, alternatively, Eq. (3.14). From
the latter equation we see that the Pomeron-Pomeron cut contribution gives a term

AP o i(i) (i) = —i
and thus a negative contribution to oi°y®. On the other hand, from general analyticity
properties we have Im & = 1/2i disc, &/¥. The discontinuity can be expressed as
a sum over all ways of cutting the diagram as shown in Fig. 13 and these have the interpre-
tation as the contribution of various elastic and multiparticle production processes to
disc, &/ and thus oi°®. Therefore, Eq. (3.1) provides a decomposition of the total
cross-section contribution in terms of various classes of production processes each of
which has a distinctive rapidity distribution (Fig. 14).

'S For ey ~ a; — «j = —1 the separation into pole and cut terms is impossible unless g;x(0) = 0.
6 /% is never singular (even if ax = 1, @; = «; = ) contrary to the claims of some authors.
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Perhaps the simplest question we can ask about multiparticle production is: What is
the relative contribution of these three different classes of processes to o4 ? Amazingly
enough, this has a simple answer. Abramovskii, Gribov and Kancheli [18] (AGK) argued
that for the Regge cut contribution in (3.14)

disc @ oc 2i Im (i€ &),
(disc @), oc i(i&) GE)* +i(i6)*(E)),
(disc ##?); oc —8i(Im &) (Im &),
(disc ), oc 4i(Im &) (Im &)). “.1)
For the case of Pomerons these terms are in the ratio
-1 =+1-442. 4.2)

Therefore, the double-scattering processes (Fig. 14c) contribute just twice as much to the
cross-section as do the diffractive dissociation processes (Fig. 14a). Furthermore, a certain
amount of absorption is required for the multiperipheral processes (Fig. 14b).

Arguments for the AGK rules (4.1) have been given within the framework of Feynman
graphs as discussed here [6, 14, 17-19] for dual models [20], and using only the general
structure of multi-Regge amplitudes [21]. There is therefore impressive theoretical support
for them.

There is a simple mnemonic for the AGK result: the integrand of the cut contribu-
tion in Eq. (3.14) is the product of three factors; the Reggeon-particle coupling N, (1),
describing the upper part of the diagram; the Reggeon-nucleus coupling [By(f) o(—1)13,
describing the lower part of the diagram; and the Regge propagators £,£; s*** linking the
two parts. According to AGK the only effect of taking discontinuities is to replace the
Regge propagators which have been cut through by 2i Im &, and complex conjugate those
occurring after the cut!?. The Reggeon-patricle (or Reggeon-nucleus) couplings are not
affected by the taking of the discontinuities. The derivation of this result depends cru-
cially on the factorized form noted above. We recall that we obtained this form under the
condition that (3.9) holds, which implies

m?R < p. 4.3)

When p <X m?R the longitudinal component of momentum transfer ¢, is no longer negli-
gible compared to |g;| and factorization and the AGK rules fail (see also the Appendix).
This fact will be of great importance in what follows.

In Section 3 we emphasized that elastic (Glauber) rescattering being a good approx-
imation does not imply the dominance of planar Feynman graphs. This becomes partic-
ularly clear in the present discussion. Planar graphs have no cuts through two Reggeons
and the cutting rules

—-1=+1-2+0

17 The cut through no Reggeons is not determined by this rule and is most easily obtained by taking
the difference between the total discontinuity and the sum of the discontinuities through n > 1 Reggeons.
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(neglecting the fact that each term is actually zero). Although elastic rescattering may be
a good approximation for ¢'*, as long as (4.3) is satisfied the various contributions have
the AGK ratios (4.2) which are typical of non-planar graphs!

We now turn from the totally inclusive cross-section to the single-particle inclusive
cross-section which is the next simplest quantity to consider. Before discussing hadron-

-nucleus scattering, we rewiew the situation for hadron-hadron scattering.

4.1. Single-particle inclusive cross-sections: hadron-hadron scattering

Suppose a rather fast particle produced in the multiperipheral process of Fig. 5a is
detected (Fig. 21a) (i.e. a particle in the central region),

m<p <p 4.4)
or
4<y<Y-A
P =~ : T,
— f
(a) (b)

Fig. 21. Contribution to inclusive cross-section from simplest multiperipheral process

The inclusive cross-section is given by the Mueller—Regge formula of Fig. 21b (see, for
example, Ref. [11])

do do - , I
S = S gy ~ PO IMES OGN I EFORO. 4
T

Fast particles can also be produced in processes in which there is a rescattering off the
“constituents” of the hadrons (for example the analogues of Figs 14b and 14c: see Fig. 22).

(a) (b)

Fig. 22. Contributions to inclusive cross-section from a) absorbed multiperipheral process and b) double
scattering process
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We can see that just as the total cross-section can be expressed as a sum of all multi-Regge
exchange contributions to the four-particle amplitude, the single-particle inclusive cross-
-section can be expressed as a sum of all multi-Regge exchange contributions to the six-
-particle amplitude. In Fig. 22 we see one possible double-Regge contribution; we discuss
others below.

The evaluation of the discontinuities in Fig. 22 proceeds exactly like that of those
in Fig. 13 which gives (4.1). We have only the replacement

Im Ei - Im EiGgé(pf) Im gi’

which is the same as that which occurs in passing from the total cross-section to (4.5).
There is one crucial difference with (4.1) however: the weight of the cut through one
Reggeon term is only half as large since now the cut must always be through the Reggeon
from which the particle 45 is produced, whereas in Fig. 13 it can be through either Reggeon.
From (4.1) we see that the sum of Figs 22a and 22b vanishes [17]. Therefore, this double-
-Regge diagram gives no contribution to the single-particle inclusive cross-section in the
central region. Likewise, the analogous multi-Regge diagrams give no contributions.
There are, however, some multi-Regge diagrams which do not give vanishing contri-
butions in the central region (see Fig. 23). These are generally neglected since they correspond

&
(I
[T

&

Tl
HiL

(a) (b)

Fig. 23. Non-vanishing cut contributions in the central region

to particle production in high mass single diffractive dissociation or through double Pomeron
exchange which empirically are small. Also, they lead to long-range correlations in the
central region which experimentally are small compared to the short-range correlations.
I shall be content to accept this conventional lore in the following.

In the fragmentation regions

0sys 4,
Y-45y<Y, (4.6)

T

Fig. 24. Contribution to inclusive cross-section in the fragmentation region
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the AGK cancellation mechanism does not operate and the discontinuities of diagrams
like those in Fig. 24 contribute. These can be expected to contribute roughly in the same
proportions as the corresponding Regge-cut diagrams for the elastic amplitude.

4.2. Single-particle inclusive cross-sections: hadron-nucleus scattering

All the above discussion carries over directly to the hadron-nucleus case including
the vanishing of multi-Regge exchange diagrams of the form Fig. 22 in the central region
with the exception of one interesting modification [22, 23]. The central region no longer
extends down to y & 4 but only to y & In Rm+4’. To see this, recall that we emphasized
that the AGK rules fail for the elastic amplitude when (4.3) is violated due to the importance

MZ

P o —Y

Yo
-y
-o-@)o-—o
(a) (b)

Fig. 25. Contributions to inclusive cross-section and the target fragmentation region

of the longitudinal momentum transfer which destroys the factorization into upper and
lower blobs of Eq. (3.14). A similar phenomenon occurs for the diagram of Fig. 25a
when M? > p/R, since again the longitudinal momentum transfer becomes important.
Therefore diagrams like those of Fig. 25b will lead to A-dependent rescattering corrections
when

y <y, =InRm+4". 4.7

(This is consistent with the picture of Fig. 20 for the special case «(0) < 1 where we saw
the dominant rescattering was for such values of rapidity (see also the Appendix).)

We now summarize the results of this section. Diagrams contributing to the elastic
amplitude are shown in Fig. 26. In the blobs representing the Reggeon-hadron interactions
the energies | M 2| < A where A is the energy at which Regge behaviour sets in. The contribu-
tions for |M 7| < A are taken into account by triple-Regge diagrams (compare (b) and (d),
(b) and (f), and (d) and (g)). When there is scattering off more than one nucleon ((c),
(e), (h), etc.) for simplicity we have always represented it as occurring through Regge
exchanges since owing to (3.4) these are enhanced compared to an arbitrary general
interaction of the form of Fig. 25b. When the rapidity y of the triple-Regge vertices, like
those in (e) and (i), is less than y,, the vertex is inside the nuclear fragmentation region
and simple expressions like those in Section 3 no longer hold.

For phenomenological purposes it is most convenient to expand in the number of
rescatterings n rather than the number of Regge exchanges as we did in Fig. 26. Thus the
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MZ
Apa= + % + g é
(b) (c)

(a)

TN
+ + —y +
(d) {e) (t)
MM M2
+ + + o
(g} (h) (i)

Fig. 26. Multi-Regge exchange contributions to & 4

contributions of Fig. 26a, b, d, f, and g are grouped together. We can then express &7y 4
as shown in Fig. 27, where the exchanges represent the full hadron-nucleon amplitude.
It is amusing that a generalization of the AGK rules holds for this expansion. For example,
the ratio of the three types of cuts (Fig. 13) of Figs 27b and c is still given by (4.1) with
Im &, replaced by the imaginary part of the full hadron-nucleon amplitude [24].

(a) (b) (c)

Fig. 27. Expression for &y 4 in terms of number of rescatterings. The double line represents the sum of all
multi-Regge exchanges to the hadron-nucleon amplitude

Diagrams contributing to the single-particle inclusive cross-section are shown in
Fig. 28. Reggeon interaction terms (Fig. 23) have been omitted.

In order to gain some insight into the implications of these complicated expressions
we consider two simple examples. As we shall see in Section 5, neither one is expected
to be applicable at present energies, so they are considered only for illustrative purposes.
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. 1 AyzA
b !
sggh? =diSCMz + + cen
PE ; ; g g

( Hadron Fragmentation)

= d|sc"zi + i

( Central)

z disc,2
I Ay=y,

{ Nucteus Fragmentation)

Fig. 28. Diagrams contributing to single-particle inclusive cross-section

First, suppose p(0) < 1'®. At very high energies [1—a(0)]In s> 1, the Regge-cut
contributions are negligible compared to the Regge pole and only the first two terms in
Figs 27 and 28 remain. We then obtain the behaviour of the single-particle spectra shown
in Fig. 29. In the hadron fragmentation region and the central region the spectrum is

hadron-nucleus

hadron -nucleon

Fig. 29. Single-particle spectra for @p(0) < 1 and extreme energies

independent of A since both do/dy and ¢'"' ~ ¢'* are proportional to the nuclear Regge
residue. A dependence occurs for y < y,, where rescatterings become important. Here
we may expect a value proportional to 4> or larger, since each particle with y < y,

18 Similar conclusions hold if #(0) = 1 and gppp(0) == 0. This is essentially the case considered in
Ref. [23].
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can rescatter a number of times proportional to A4!/3. Integrating over y we obtain the
total multiplicity

(4, Y) = a + (Y = yo) +a"(4). (4.8)

As a second illustrative example we consider ap(0) & 1, gppp(0) # 0 and A4 very large.
Let us first compute the contribution of the graph in Fig. 26e. From (2.27), (3.5) and (3.12)
we have!®
] €

2 7312\ ap(0)— 2ap(t)
D AA-1) gy d% M7\® ® §%P(0)
16n* s \s

- Als

MA\2
x Bu(0)gper(1)BR(HE* (‘I%‘*‘ (2—p> ) . 4.9)

The nuclear factor restricts the integral to M2?/2p < 1/R and we have

@ A? B (0)BR(0)gree(0) S
¢ r — — n

. 4.10
R? 167? AmR (4.10)

Comparing with the single-Regge exchange term of Fig. 26a
oV = AB,(0)BN(0), (4.11)

Fig. 30. Dominant diagrams for «p(0) & 1, gppp(0) # 0 and AY/? In s large

we see that it can be quite significant for 4/3In s large?®. The dominant diagrams are
the n the fan diagrams” [22] shown in Fig. 30. It is amussing that these can be explicitly
summed to give {23]

(4.12)

1/3
o= ap oo [(1+ 4 HGEmD ),

16mR2

19 We have rotated the M2 contour freely. The corrections discussed at the end of Section 3 are
negligible to leading order inln s here.
20 We consider the regime |@p(0)— 1]In s <1 so the pole and cut terms have the same energy dependence.
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where we have neglected In- AmR compared to Y for simplicity. Equations (4.11) and (4.10)
are the first two terms in the series expansion of (4.12). A similar expression holds for
the single-particle inclusive cross-section in the central region

Al l3ﬁN(O)g per(0)

do
dy

do
A dy

It is important to note that y and not Y appears in (4.13), since due to the AGK cancellation
effect all fans starting at rapidities greater than y give vanishing contribution to do/dy.

nucleus, A, >A
| 2 1
‘ / nucleus, A,

nucleon

1 do

Fig. 31. Single-particle spectra for p(0) = 1 and gppp (0) A/® Y large

The inclusive cross-section thus has the form shown in Fig. 31. There is no plateau for
large A!

The above examples show that the behaviour of the inclusive cross-section is quite
dependent on the actual values of the parameters in hadron-hadron scattering. We shall

find in the next section where we turn to phenomenology that neither of the above examples
is relevant at present energies.

5. Phenomenological implications

We now discuss briefly the phenomenological implications of the Regge model for
hadron-nucleus collisions for current energies (p < 10* GeV/c) and available nuclei
(4 < 250). We begin with a review of hadron-hadron phenomenology.

5.1. Hadron-hadron phenomenology

We follow the work of Capella, Kaplan and Tran [26] and Capella and Kaidalov [27].
These authors take ap(0) 2 1 and gppp(0) # 0. From an analysis of the proton-proton
cross-section at a given energy (say In s = 5) they have

(B,(0))* ~ 62 mb =~ 160 GeV~2,

2y, ~ 3.3GeV™2. (5.1)
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Single Pomeron exchange alone thus gives a app of 62 mb; multiple Pomeron exchanges
(Fig. 32a) reduce this to the observed 43 mb. The contribution of n-Pomeron exchange
can be expressed as a multiple dispersion integral over the multiple discontinuity of the
blobs in the variables M7 just as in Eq. (2.25). First consider the contribution of just

2@t

MZ
(a) (c)

Fig. 32. a) n-Pomeron exchange contribution to elastic amphtudc. b) Elastic contribution only. ¢) Elastic
and resonance contributions

M’

the elastic state in each M ? (Fig. 32b). The sum of all such terms has the eikonal form

z : d“)(s, 0) 1 zw : AR |
o) = o) -z —_—
H(s, 0) = (s, 0) (Sn(Zypoz n s)s) — 24 (s, 0) ( 2) - (5.2)

From (5.1) we have z = 2.33. For such a large value of z, the multiple Pomeron exchanges
are quite important — the two-Pomeron exchange being = 309, of the one-Pomeron
exchange, for example. The contribution of low mass N* resonances (Fig. 32¢) can be
taken into account by a straightforward generalization of (5.2). Using results on single
diffractive production of resonances, they estimate

#*
)X W S OJSW (5.3)

This means the total two-Pomeron contribution is approximately (1.16)> ~ 1.3 times
the purely elastic contributions. Assuming the N* couplings to the Pomeron equal the
proton coupling, one can compute the graphs of Figs 32b and ¢ to obtain ¢ = 62 mb,
6'¥ = ~25mb, ¢ = 10mb, 6™ = —4mb, ¢ = 1 mb, ¢'2 = ~0.4mb, and o
= 43 mb.

The blobs in Fig. 32a also contain contributions from high mass non-resonant diffrac-
tively produced states. Thus the M? discontinuity of the Pomeron-particle amplitude of
Fig.12 has the behaviour shown in Fig. 33. For M2 < A = 5 GeV? the contribution is
well approximated by the elastic and resonance contributions, while for M? > A it is
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Fig. 33. Imaginary part of the Pomeron-proton amplitude

well approximated by the triple-Pomeron. Therefore the contribution of large M? in the
upper blob is given by an expression similar to Eq. (4.9)

3
oo L (;’n) idlscmv“’ﬂN( 2)
M2 M2 a(0) = 2a(t)
f f ( ) BO)gree( DB, (5.4)

where we have included only the elastic state in the lower blob. The triple-Pomeron
coupling is obtained from inclusive cross-section measurements for M?/s < 0.1,

d 1 2a(t) MZ a(0) M2 —1-2at
—M%” = {62 B(O)geee(H)B*(t) (ﬁz) (——s—) = G(f) (—;) (5.5)

d—dt
N
with G(f) ~ (2.5 mb — GeV-2) e?”*"" where y = 1 GeV-2 Substituting (5.5) in
(5.4) we have

0.1 M2 M2 - 1
e [a(20) -
s s , s
Als 2yp+7y+2a In~N—I—2

25mbGeV™2 0.1

Y o A~ —05mbln— &~ —2mb. (5.6)
5.5GeV™? 5/s 50

The total contribution will be modified somewhat by elastic and inelastic rescattering
analogous to Figs 32b and c, but Eq. (5.6) indicates that the Y-graph” contribution
is rather small?!.

21 It must be noted, however, that the quantity G(¢) extracted from inclusive cross-sections (5.5)
may differ significantly from the bare triple-Pomeron coupling due to the presence of absorptive correc-
tions [28].
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Graphs containing several large M ? contributions lead to ”Reggeon loops” such as
shown in Fig. 34. These are smaller than the corresponding pole terms by a factor [26, 29]

gepp(0) 1
3.
8n a

ns~10"%ins 5.1

and are therefore negligible.

Fig. 34. Simplest Reggeon-loop graph

We now discuss briefly the energy dependence of s,,,. For «(0) = 1, the graphs of
Fig. 32 increase only slightly (=~ 2mb) over the ISR energy range if they are evaluated
treating s as asymptotic. The Y-graphs give a negative contribution which increases in
magnitude with energy. Hence the total cross-section is rather constant or perhaps even
decreasing with energy. To obtain the observed increase of the cross-section one must
take a(0) =~ 1.1 [26]. The renormalized (by graphs like Fig. 34) Pomeron intercept is also
greater than one due to the smallness of (5.7) and the Froissart bound is enforced by the
graphs of Fig. 32322,

Recently, it has been pointed out that s cannot really be treated as asymptotic in
the evaluation of the multi-Regge exchange graphs [27]. Consider, for example, the
imaginary part of the two-Regge exchange graph which has three contributions like
those shown in Figs 13 and 14. The contribution with a cut through both Reggeons presum-
ably has a higher threshold than the other terms since the energy is shared between two
multiperipheral chains. Thus at non-asymptotic energies the weight of this term may be less
than the usual +2 with the result that the graph is larger in magnitude. These kinematic
effects will then tend to reduce the cross-section at lower energies giving a marked rise of
the contribution of graphs of the form of Fig. 32. With a reasonable ansatz for the kinematic
effects, Capella and Kaidalov could reproduce the observed rise of the cross-section with
a(0) = 123,

Actually, most of the qualitative implications of hadron-hadron phenomenology
for hadron-nucleus scattering that we will discuss do not depend much on the values
(5.1). For example, one could use the pre-ISR phenomenology where ¢'® asymptotes
to 40 mb, or the work of the Leningrad group [33] who take gppp(0) = 0. The crucial
aspect is the smallness of the triple-Pomeron coupling.

22 The theoretical acceptability of such a scheme is presently under debate. It is not clear that the
renormalized intercept can ever be above unity [30].

23 Or 2(0) equal to the critical value (slightly greater than one) for which the renormalized intercept
is exactly one. For other discussions of such kinematic effects, see Refs [31] and [32].



885

5.2. Hadron-nucleus phenomenology

We first consider the energy and A dependence of the total cross-section. For relatively
low energies p < m?R the M? values in (3.6) are restricted to M2 ~ m? and the elastic
Glauber formula is expected to hold to good approximation, We can use Eq. (2.32) for
large A. Absorption is very large for big nuclei and we can be near the black disk limit

6! ~ ¢'"' > 7R (5.8)

At higher energies, low mass diffractive production becomes important and this
leads to further absorption and decrease of the cross-section for p ¥ M?R. This behaviour
is observed and Glauber fits with inelastic rescattering are in adequate agreement with
the data [34].

At very high energies, graphs containing the triple-Pomeron vertex (for example,
Fig. 26¢) will become important and the Glauber formula will no longer hold. This will
occur, roughly speaking, when Figs 26 ¢ and 26c comparable [15].

_s* '

mR 2

dM? = fdM (5.9)
I

A
i.e.
o, s* nﬂ4(0)
—s B0 0On—— =~
162 P OO In 200 > 57 -
This gives
S*

Although the precise value is strongly dependent on f(0), it is fairly clear from such
estimates that triple-Pomeron interactions are important at only extremely high energies.
Indeed the energies are comparable with those at which Pomeron loops (Fig. 34) are
important and thus a treatment involves the solution of the full Reggeon field theory
(see, for example, Ref. [6]).

It is also important to make some estimate of the Pomeron residue renormalization
(see Eq. (3.14)). If it is important there will be significant effects for the single-particle
inclusive cross-section in the central region since it is proportional to f, (Fig. 28).
The lowest order term is Fig. 26a, and is given by (4.11), while the triple-Pomeron
contribution is given by (4.10) (sce, however, footnote 15). The ratio is thus

ﬁf‘Z}(PFP) A1/3GPPP S* A1/3 S*

l o —

Pt ™’ l -
B’ FAORZ " AmR 600 25417

(5.11)
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An estimate of the Reggeon-Reggeon-Pomeron triple coupling can be obtained from
Eq. (3.24) with the result

DER 26 In54'"
P G & 53 R:P InemR % ————, (5.12)
B Rp*m 125

where we used Gggp = 30 mb/GeV-2 [35]. Both confributions are very small. All such
estimates must be treated with great caution, however. As we emphasized in Section 3,
the nuclear structure enters in a non-trivial way. Although they are suppressed, contribu-
tions for M? > p/R do give contributions as (5.11) shows. We can have contributions for

Fig. 35. Diagram appropriate for M?x s*

M? ~ s* for which one must use the more general couplings of Fig. 35. Also as one can
see clearly from (3.25) one needs a knowledge of the full six-particle hadronic amplitude
and not only its M2 discontinuity?4. Nonetheless, since the discontinuity of the amplitude
for the M? ~ s* region is expected to be related to the M? < s* region by duality and the
full amplitude is closely related to its discontinuity through analyticity, one might expect
that (5.11) and (5.12) give order of magnitude estimates. Therefore, in the absence of
evidence to the contrary, I shall assume the Pomeron residue renormalization is small
in the following.

It should be emphasized that this is a very different position from that advocated
by Koplik and Mueller [16]. They argue on general grounds that in “‘soft field theory”
(which leads to Regge behaviour — see Appendix) Regge residue renormalization must
be important for large 4 so that §, cc 42/3. When this is the case the single and multiple
Regge exchange contributions to the elastic amplitude each receive contributions from
a large number of multiple scattering terms 4{"). The multiple scattering expansion (2.1)
is then not very useful and the natural expansion is in terms of the number of Regge
exchanges, each with fully renormalized residue. Since the actual values of the renormalized
residues depend upon detailed dynamics, it is difficult to obtain quantitative results for
cross sections, multiplicities, etc. in this case. (Koplik and Mueller have obtained some
general relationships, however. These are qualitatively similar to those discussed in the
following paragraph.) It is similarly difficult to estimate for what values of A the large 4
behaviour sets in and thus to know if it is applicable to available nuclei. Although the
estimates given in the above paragraph would indicate that it is not applicable, they must

24 This point has been emphasized by several authors; see, for example, Refs [16] and [32].
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be treated with very great caution and it is possible that Regge residue renormalization
is important for available nuclei. This question is central to the Regge description of hadron-
-nucleus scattering and needs further study.

I thank A. Mueller for very informative discussions on these points.

We turn to single-particle inclusive cross-sections. The central region is simplest
to discuss. Owing to the AGK cancellation mechanism only the simple Mueller diagram
of Fig. 28 contributes (neglecting diagrams of the form of Fig. 23 as usual). On the basis
of the arguments given above, the nuclear vertex is Afy so

do,
4 L B(0)GM AR L, (5.13)
dy
We have then
1 doy, - | dogn
“Tnel =V e ) (5.19)
ahAl dy central G’th dy central

where v is the average number of interactions defined by

ihel
Aoy
inel °
ha

v = (5.15)
Since ¢i°' & 7R2xA2/3 we have the central region growing approximately as 4'/3 [16, 36]
which is quite different from that discussed in either of the examples considered in
Section 425. Thus, as a result of the AGK cancellation, if the total cross-section approaches
the black disk limit, the inclusive cross-section must grow roughly as A4'/3 in the
central region [16, 36].

In the projectile fragmentation region the situation is rather more complicated due
to the presence of multi-Regge exchanges (Fig. 28). These are quite important even in
hadron-hadron scattering (diffraction dissociation comes only from diagrams with n > 2
and is sizeable) and can be only more important in the nuclear case due to the enhancement
of diagrams with large #». Since the n-fold rescattering diagram contains contributions
with cuts through k < n Pomerons (which have k times the usual density of particles),
we might naively expect a large A-dependence of do/dy. However, it has recently been
pointed out [27] that one does not expect cuts through more than one Pomeron to contribute
near the phase space boundary. For example, if one supposes that the cut through two
Pomerons is initiated by the splitting of a given particle into two virtual constituents
(as in Fig. 14c) and each of these has half the incident momentum, this cut contributes
only up to y = Y — In 2. Thus the shape of the non-diffractive part of the fragmentation
spectrum should be A independent for y > Y — In 2. However, these arguments are
not sufficient to exclude A dependence of 1/¢"™! do/dy in the leading part of the fragmen-
tation region since there are absorptive effects in do/dy and ¢ includes contributions
from cuts through any number of Pomerons. Both of these are A-dependent. Stated

25 We re-emphasize that this depends on nuclear Regge residue renormalization being negligible.
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another way, while the energy-momentum sum rule

1 d inel, h3
dyeyﬁy( dp, o ~nei “—“"”:M =1 (5.16)
= my oy d°pdy
h3

constrains the single-particle spectrum, the contribution of the cut through one Pomeron
could be either somewhat reduced or increased with the excess or deficit of energy being
carried off either by slower particles arising from the cuts through several Pomerons or
by diffractively produced particles.

We are able to say little about the nuclear fragmentation region for the reasons discussed
below Eq. (5.12). Energy momentum conservation will constrain the spectrum somewhat,
but its consequences will be weaker since the nucleons carry most of the momentum and
energy. In Fig. 36 we sketch the single-particle inclusive spectrum to be expected on the
basis of the above discussion?®. According to Ref. [27], the central region behaviour
(Eq. (5.15)) only obtains when the rapidity differs from Y by more than In 2v, since the

)

hadron-nucleus

hadron -~ nucleon

O N
o‘(
-

Fig. 36. Single-particle inclusive spectra

AGK rules only hold when energy-momentum conservation effects are unimportant (all
discontinuities through the average number (v oc 4!/?) Pomerons are unaffected). Owing
to this effect in the central region dn/dy|,/dn/dy. will increase with energy to v (for
energies below those for which triple Pomeron interactions become important). As we
move towards y = ¥ we expect a dependence on A4 weaker than 4*/3 since cuts through
fewer and fewer Pomerons are allowed. A more detailed study of the model with the
implementation of energy momentum conservation is necessary before it will be clear
whether these behaviours are consistent with the data (see, for example, Ref. [37)).
The central region behaviour may provide a very critical test of the model.

We have discussed above only the qualitative features of the simplest inclusive
processes with emphasis on the 4 and s dependence. Even these await quantitative con-
frontation with experiment. However, hadron-nucleus collisions offer us a great wealth
of other information which the theory should explain. Some of these which are most
directly related to the theory are fluctuations in the multiplicity distribution [32], two-
-particle correlations outside the nucleus fragmentation region, and correlations between
the number of knocked-out nucleons (N, for emulsions) and the total multiplicity??

26 Diffractively produced particles have been excluded. They require a separate discussion.
27 For some calculations within the model of Schwimmer [25], see the second reference of Ref. [25].
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and rapidity distributions. As far as the latter point is concerned, since contributions
with N-struck nucleons only arise from cuts through N Reggeons we expect the multiplicity
to be proportional to N, since empirically N, is proportional to N. Since the diagram of
Fig. 32c dominate and cuts through fewer and fewer ladders contribute to dn/dy as y — ¥,
we expect the coefficient of N, in dn/dy = dajdy+(dB/dy)N, to decrease to zero as y — ¥,
so dn/dy becomes less than that for hydrogen for large N,. At least qualitatively one sees
that N, can be used as a measure of the number of cut ladders. In hadron-hadron collisions
we have no such probe available. This is just one way in which hadron-nucleus collisions
can be used to test the model in more subtle ways than is possible in elementary particle
reactions.

Above we have discussed only the case of large 4. Interesting information can also
be obtained from small nuclei. Let us consider the deuteron. In this case, a formula like
(3.2) but in terms of the deuteron form factor can be derived without use of the approxi-
mation (2.26) [4]. Thus the cross-section deficit

1
00,-q = Ot 402, — 0Oty = — . Im A%, .17

can be calculated explicitly. Since do can be directly measured, we can measure a small
term which we could not measure for a large nucleus. The dominant contribution to do
is the elastic pion pole (= 1.4 mb) as expected from our previous discussions. According
to the most recent and thorough evaluation [38], the next most important term is the
triple-Pomeron which grows like 0.21n p mb and thus manifests itself by a significant
logarithmic increase in ¢ 28. One can anticipate using the deuteron as a testing ground
for other properties of the model.

I would like to thank H. Lubatti for stimulating my interest in hadron-nucleus
scattering. I am greatly indebted to M. Baker for many discussions on the subject which
generated not only enlightenment but also enthusiasm. I would like to thank G. Winbow
for several very informative discussions and L. Bertocchi and A. Capelia for many helpful
discussions on the material in Section 5. I also thank R. C. Brower, R. N. Cahn, S. Ellis,
T. Jaroszewicz, H. Kiihn, J. Miller, A. Mueller, A. R. White and K. Zalewski for very
useful discussions. I thank D. Amati for the hospitality of the CERN Theory Division.

APPENDIX

Physical space-time picture of Regge exchange

We briefly discuss the physical space-time picture of Regge exchange in the multi-
peripheral model. For further discussion we refer the reader to Refs [4, 16, 19], and [39].
In the multiperipheral model the fundamental high-energy interaction between two
hadrons occurs through production processes of the form shown in Fig. 5a, where n

28 This work was based on approximately constant hadron cross-sections. Since 7N cross-sections
actually are increasing there will be other increasing terms which will tend to obscure the triple-Pomeron
contribution to an increase in do.
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is large since the amplitude is assumed to be small when any of the subenergies (p;+p))*
is large. Two further important characteristics of the model are the rapid decrease of ampli-
tudes for large ¢, and the absence of correlations between particles widely separated in
Fig. 5a. Although these very general properties of ’soft field theory” are sufficient to
allow us to derive all the results discussed below [6, 16, 19] we will discuss for concreteness
the explicit realization of the model in terms of ladder graphs in ¢2 field theory [40]. We
develop a space-time picture for the model by studying old-fashioned perturbation theory.
Consider the process of Fig. 5a. The momenta p; are ordered so that the momentum
transfers are small. It can be shown®® that in the laboratory frame (Eq. 1.14))

|pirl = 1, (A.D
where p is the mass in the theory and
Poyz = Pz = P1z 2 P2z = D3z = -+
where the inequalities extend down to |p; | ~ u. Furthermore, typically one has
Qi: =Qioy,:—Pi: ® c7'Q. 1: ¥ 3 Qi ye (A2)

We consider first the old-fashioned perturbation theory graph shown in Fig. 373,
and discuss the time ordering

<<ty <..<I, (A3)

for which the amplitude is given by

”n w i iz
iAQ2m)*6*(pu, + Pn, — ‘Zl p) = (=" _j dt, _f dt,_y ... _,‘ dt H(t,) ... H{t), (A4

where

H(t) = | @*xH(x) = [ d>xg¢’(x) (A.5)
and

1 d3p —ip'x + ip-x
$(x) = @ j \F_E—; (a(p)e™ P " +a " (p)e® ). (A.6)

A vertex like that shown in Fig. 38a gives a factor

t

j diH(t') oc

- K

—i(E1— Ey— Ex)

E—£ g > ®i—Fimh. (A7)

J

—Ek

The denominator in (A.7) means that times ¢’ of the order 7 & |E;—E.—E,|~! are important
i P

29 See, for example, Chapter lc of Ref. [6]. ‘
30 Graphs with other orderings of the p; are smaller because they involve larger subenergies (p;+p’)2.
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in the integral. If the momenta are small |p,,| & p where yu is the mass in the theory, then

T

Q

1
— (pl=n), (A.8)
u

which gives the basic time scale of the interaction.
In Fig. 37 there are vertices involving momenta with large z-components so that

2 2
P+ i
E ~ (p.l+ = . (A.9)
zlpl,zl
Then
woout
E‘—Ej—Ek = Ipizl—lpjzl_lpkz|+ ~ P (AIO)
iz Iz

since from (A.2) all the momenta entering the vertex have the same sign and are of the same
order of magnitude. We then have

Tx *5;— (1Pl > ), (A1D)

which is recognized as the boosted version of (A.8). Fixingf, = O (the integral over ¢,

th

Fig. 37. Old-fashioned perturbation theory graph for production process

gives energy conservation), we see that the /-th interaction in Fig. 37 takes place at a time
of order

—1y-1 Pz
= —(C™Y IF. (A.12)

For other time orderings there occur vertices of the type shown in Fig. 38b. These
give a factor (E;+E;+E)"' ~ p_ ' and therefore smaller by a factor p;? in the high-
-energy limit,

The physical picture of the multiperipheral model in lIongitudinal space and time can
therefore be described as follows: At a long time (= p,/u?) and distance before reaching
the target, the fast incident particle emits a particle of momentum p,, reducing its momen-
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tum to C-!p,. Later, at a time ~ C-p,/u? before reaching the target, it emits a second
particle reducing its momentum to C—?p,. Only after emitting a large number of particles
so its energy is of order u does it finally interact with the target®'. To undergo a scattering,

P
P,
\T Pj P;
P« Py
(a) (b)

Fig. 38. Interactions occurring in a) dominant and b) suppressed time orderings

the projectile must start emitting particles®? at distances =~ p,/p> before reaching the
target! The basic Regge exchange process (Fig. 1) occurs over a very large distance = p;/;t2
in the laboratory at high energies — see Fig. 39.

% pz'uz i
TN .
N yd

R

Fig. 39. Spatial development in elastic scattering by single Regge exchange. R is the dimension of the target

The multiperipheral model also has an interesting physical picture in transverse
space [4], but since this is not essential to what follows, we will not discuss it here. We
turn instead to some applications involving multiple Regge exchange processes.

It is now trivial to see the famous vanishing of the AFS graph (Fig. 17a) at high
energies — see Fig. 40. Since z, must be of order of the size R of the target the graph
vanishes for

2p,
2

> R. (A.13)

This is in complete agreement with the discussion of Section 3, where we found that when

31 Note (C-Y)"* p, ~ u implies the well-known result n = (1/Inc) In s-+b.
32 These are, of course, virtual until the interaction with the target which allows energy conservation
has taken place.
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(A.13) was satisfied, the cut Regge contribution could be expressed in terms of the fixed
pole residue (3.15). The latter vanishes for the AFS diagram.

On the other hand, the Mandelstam graph is perfectly acceptable from a space-time
point of view — see Fig. 41. The space-time picture for this graph is quite helpful since

it can be used to give a relatively simple derivation of the AGK rules (at least
for R > 1/ [19]

l— P ] P

Y

Fig. 40. Spatial development of the AFS graph

We now return to hadron-nucleus scattering. We can imagine the incident hadron
before it reaches the nucleus developing virtual states like those shown in Fig. 42, In
addition to the basic single chain, there are various multiple chain states. After interaction
with the target nucleus, we therefore have final states with different distributions of particles.

—_

N
—
—
Fig. 41. Spatial development of the Mandelstam graph

Since the probability of each chain interacting with the nucleus is proportional to A4*/333
we would expect generally a different distribution of final states for each A4.

Let us return for a moment to the (unrealistic) example of ap(0) < 1 discussed at
the end of Section 4. The contributions of the double chain states (Figs 42b, ¢, and d)

33 For p’ < u?R, the probability is less than this because the lifetime of the virtual particle is shorter
than the time it takes it to traverse the nucleus [16].
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is not a priori negligible due to the 4!/ enhancement, and has the behaviour as a function
of p’ shown in Fig. 20. Furthermore, AFS-like graphs (Fig. 42d) can contribute for a much
larger range (p’ << p?R) than they do in hadron-hadron scattering. The nuclear dependence
of the interaction thus extends over produced particles of rapidities y < yo (Eq. 4.7)).
If we consider the single-particle inclusive cross-section we see that the contributions of
Mandelstam-like graphs (Figs 42b and c) cancel each other for y > y, (see also Fig. 22).
For y < y, all the multiple chain states may contribute giving Fig. 29. The situation can
be described by saying that for p’ = u2R, the lifetime of the virtual particles is long and

S

(c) (d)

Fig. 42. Virtual states of incident hadron corresponding to a) single Regge exchange, b) and ¢) Mandelstam-
-like triple-Regge contributions, and d) AFS-like triple-Regge contribution

the nucleus is transparent to them (owing to the softness” of the theory) while for
P’ < 42R the lifetime is less than the nuclear size and sequential scatterings can take place.
However, it must be recalled that the suppression of the many chain states only occurs
for ap(0) < 1 and |[1—ap 0){Inp’ > 1.

It should be remarked that the break-up into AFS-like and Mandelstam-like graphs
and their different properties, which is immediate in this picture, is not a new feature of
the problem which we have overlooked in the main body of the text. It is no more than
a particular aspect of the phenomena that the amplitude for p” < u?R cannot be expressed
completely in terms of the discontinuity of the Reggeon-particle amplitude. Therefore,
Feynman graphs like the AFS graph which have vanishing integrals over their discontinu-
ities can contribute. I do not feel that the decomposition of the contribution into separate
Mandelstam and AFS parts has much significance or utility. It is better to deal directly
with the expressions of Section 3 in which the Reggeon particle amplitude is treated
generally using dispersion relations and analyticity instead of being treated as a sum of
particular Feynman graphs.

For ap(0) 2 1, the many chain states no longer decrease with energy and they can
give important contributions for all values of the produced particles. The simplicity of
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the picture of Figs 37 or 42a is then lost. It thus appears that the space-time picture in the
multiperipheral model, which has great appeal from and intuitive physical point of view,
gives us a simple picture for hadron-nucleus scattering only for ax(0) < 1. In this case
there is also a close correspondence to the parton model (see, for example, Refs [16] and
[39]), so one can equivalently use the parton picture although further elaboration of the
hadron-hadron model is necessary to discuss the interaction of the “wee’” partons with the
nucleus. I believe the correct elaboration is just that abstracted from the Regge model3*.
For the bare Pomeron intercept ap(0) > 1, the space-time picture is not too useful and
furthermore the parton model probably cannot be formulated®s. Unfortunately, it
appears that this is the actual situation.

Editorial note. This article was proofread by the editors only, not by the author.
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