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A Schroedinger type dquantization of free fields on arbitrary spacelike hypersurfaces
in curved space-time is considered. The gravitational field is assumed to be a classical back-
ground. In the field representation the state functional depends on the field configuration
on the hypersurface. A generalized Tomonaga-Schwinger equation describes the dynamical
evolution of the quantum field. The expectation values of the field operators (e. g., energy-
momentum tensor) are defined.

1. Introduction

Using the Heisenberg picture we quantized the Maxwell field in an external gravita-
tional field [9]. In the present paper we are treating the quantum field theory in a prescribed
curved space-time from a different point of view. Schweber [1] writes: “The fact that
second-quantized formulation can be considered as a quantized field theory suggests
that besides the particle description there should also be a fie/d description”. Tomonaga [2],
Schwinger [3], and Dirac [4] formulated quantum theory with states defined on general
spacelike hypersurfaces in the Minkowski space-time. In the canonical quantization of
gravity (for a survey see [5]) this concept of states defined on hypersurfaces has fundamental
importance. In this spirit we introcduce a state functional which gives us the probability
to measure a certain configuration of the considered matter field on a particular hypersurface
in the nonflat background space-time. From the principle of path independence [6] the
commutation rules (8) are derived. By means of these relations and the dynamical law
(15) it follows that the appropriately defined expectation values of the field operators
fulfil the corresponding classical equations. As an example we consider the Hermitian
scalar field influenced by a Friedman metric.
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2. Spacelike hypersurfaces

A spacelike hypersurface S (with unit normal vector n') embedded in space-time is
given by prescribing the space-time coordinates Y' as functions of the intrinsic coordi-
nates x“?

Y= Yi(x%.
The metric tensors are correlated by
8ap = Yain;igij’ gij = Y:Yljgab_ninjs Yal = Yfaa niYai = 0

An infinitesimal deformation of the surface is described by a vector field Y(x®) pointing
from one point x? on the original surface to the point with the same label x* on the
slightly deformed surface (fig.).

XQ
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Choosing a special coordinate system we can parametrize some family of hypersurfaces
by x* = t = constant;

1 N,
n; = —né?a n s gij = Bav 2 ¢ . (1)
N N, —n*+N_N°

All covariant equations can be written in a form containing only ‘’kinemetrical invariants™
[11] with respect to the restricted group of transformations

1l

= xM(x% %),  x* = x¥(x%).
Expressed by its components in the adapted coordinate system (1) the infinitesimal defor-
mation reads
8Y ‘= (Y,'N°+n'n)ét. )

The functions n and N“ are connected with the normal and tangential deformations,
respectively.

! Indices: #,j = 1-4 (space-time), a, b, ¢ == 1-3 (hypersurface).
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3. Canonical formalism

We consider classical fields U, with the Lagrangian
,Z’ = g(UAs UA,i9 gij)' (3)

Defining the momentum n* canonically conjugate to U, in the usual manner, we obtain
for the action of the matter field?
o0&

S=(Ldt, L={[@U,~NT,—nT)d, n*= T @
A

'g.aEYaiyi: fEnig-'-’ g.iE —\/—g_T,-jnj,
where T;; is the symmetrical energy-momentum tensor. In the case of the Lagrangian (3)
the following relations hold:
o7, oT

= 0’ T = tg-ab, ja = g T'a s
6gbc 6gab % i \/g i

provided that J and 4, are considered as functions of the canonical momenta. The field
equations have the Poisson bracket form

Ug=[UgyH), n*=[z"H] &)
and the infinitesimal change of some functional F under (2) is
OF = [F, H]ot+ fé% dg(x)d?>x’, F = F(U,, Ugor 7, g.b)- (6)
The Hamiltonian H is immediately obtainable from (4),
H = [(nT +N°T )d’x = [ T3 /g nd’x, @)

in accordance with [8]. Starting with given values U, and n* on an initial hypersurface .S,
and solving the dynamical equations (5), we get the values U, and n* on a final hyper-
surface §, independently of the special slicing of space-time between S, and §,. From
this “principle of path independence” one can derive the commutation rules for 9
and 7,3

[T(x¥), T(x)] = Tx)6,4(x, x)+ T (%) o(x, X),
[7a(x), To(x)] = T ox)0,5(x, X} + T (%) o, X),
[74x), T ()] = T (x)8 o(x, x')+ T o(x)0 4(x, x"). ®

The external field g,, is not included among the dynamical variables which are used in
evaluating the Poisson brackets. In order to derive the relations (8) we have therefore to

? Apart from a sign in 7 the same definitions as in [9] are used.
3 F(x) = [F(x’) 6(x, x') d®>x’: The S-function is by definition a 3-density with respect to its second
argument.
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generalize the method in [7]. Two infinitesimal deformations D; and D, are applied one
after the other. If they are performed in reversed order, one arrives in general at another
hypersurface. That difference has to be compensated by a further deformation Dj;. For
the both paths (characterized by D,D, and D;D,D,) leading from the same initial hyper-
surface to the same final hypersurface we compute the dynamical evolution according
to the law (6) up to terms of second order in the deformations. Because of the path independ-
ence the results must agree. This consistency between field dynamics and kinematics of
sliced space-time gives rise to the commutation rules (8). They are automatically fulfilled
in the classical theory and should also be valid in an acceptable quantum theory (with
commutators in place of Poisson brackets). The “structure constants” on the right-hand
side of (8) are universal in the sense that they are the same ones for all fields. However,
they depend on the spatial metric.

4. Integral conserved quantities

If the space-time admits a group of motions G, with r Killing vectors K‘f(u =1-r)
and the structure constants C?

uvs
K:.tK{:,i_KiKi,i = CivK:» (9)
we have r integral conserved quantities

E, = — [ K,T/df;
Splitting the Killing vectors into parts normal and tangent to the surface,

K= YKi—n'K,,
we get from the definitions in equation (4)

E, = [(KiT ,— K, T)d’x. (10)

The relation
[E,,E,] = CE, (11)

has been derived in [10]. We obtain it without lengthy calculations when we start from
the basic relations (8). For this purpose we write down the kinemetrically invariant form
of the Killing equations,*

Ku(a;b) = % a4gabl<u
Kooy = 0:40,K% = —n(n™'K,)* (12)
0,K, = n 'K

* In the 3-covariant form, metric operations are performed with gg. The symbol 24(= invariant
time derivative) has been defined in [9].
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with the aid of which we verify the relations
2K K+ K KD = C3KL,
2K Ko = CLK, (13)

following from the structure relations (9). In order to verify the result (11) we evaluate
the Poisson brackets of the integrals (10) using the equations (8), (12), and (13).

5. Transition to the quantum field theory

We choose Schroedinger picture and field representation. In the present paper, we
restrict ourselves to boson fields. In analogy to the quantum mechanics we substitute

(h =1)

0
[~ —iE1 Um0 = U =i 5 9

representing the usual canonical commutation relations for boson fields. We introduce
the probability amplitude or state functional ¥ which is a functional of the field configura-
tion U, (x) and depends on the selected hypersurface, symbolically

Y = YU (%), Y(x)).

The state is defined on an arbitrary spacelike hypersurface. When we deform the hyper-
surface by oY, the state functional changes its value. We postulate the fundamental
dynamical law (generalized Tomonaga—Schwinger equation)

oY

‘ S
i ()W (15)

which describes the change of state associated with Jocal deformations. Choosing a family
of hypersurfaces .7 = constant we derive from (15) the Schroedinger equation

0w \
”a—’t* HT, H = 5.9.461 X (16)

with the Hamiltonian (7). The constraints in the parametrized theory [4] suggest the structure
of the dynamical law (15). To test this equation one has first of all to check the com-
patibility condition
0T (x) 0T (x')
dYix)  dYi(x)

—i[Tx), T {x)]- = (a7

following from the permutability of the functional derivatives. The condition (17) is
proved to be identically satisfied because of the commutation rules (8), in which the Poisson
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brackets are now substituted by commutators according to (14). For the calculations we
use the formulas [7]:

Vi) _ %, %)
2 e
5ga (X) i ’ j ’ j [
5Y:2x,) = g Y Vo(x, X)+ (Y6 o(x, X')+ ¥§5 (x, X)),
on’ . . ;
ni(x’) = gabeJni‘S,a(% x)— gkt,i"k(gﬂ'*‘% "J"l)a(xs x),
SYi(x")

the rules for the delta function, and the equations (4). The non-commuting field operators
have to be ordered in such a way that the basic relations (8) are valid in the quantum
field theory. This can be achieved by symmetrizing the products of operators in linear
field theories.

6. Expectation values
In accordance with the probability interpretation we normalize ¥ in the usual manner,’
fe*wadu = 1.

The norm is conserved under hypersurface deformations because of the generalized
Tomonaga-Schwinger equation (15). The expectation values of the field operators are
defined like in quantum mechanics, but the infinite number of degrees of freedom in field
theory is reflected by functional integration instead of ordinary integration over the con-
figuration space. The expectation values

U, =|¥Y*U,¥dU, =*

oY
—i f¥Y* —dU

satisfy the classical field equations (e.g., Klein—-Gordon equation). This statement is
analogous to Ehrenfest’s theorem in quantum mechanics. Thus, the classical field equations
are derivable from the basic equations of the theory. The expectation values of the energy-
-momentum tensor are important because the quantum field could influence the classical
gravitational field via Einstein’s equations

R;;—1 Rg;; = «T;;, (18)
if T;; fulfills the condition

—0,T +n " T y+% T ®048ar = 0
=0: B (19)
04T s+~ (nT ) y—n""'n,T = 0.

TV,

37

5 The notation ... dU means functional integration.
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The kinemetrically invariant equations (19) have been given in [9]. The space-time
components of the tensor T;; are
T = Y YT+ 2nY T - n'n'T.
Using the Schroedinger equation (16) we have, for instance,
0, = —in~' [ Y*[T,H]_PdU + | ¥*0,7 ¥dU.

With the aid of the commutation relations (8) we are then able to verify the energy-momen-
tum law (19) explicitly. The expectation values T;; on a fixed space-time point P are not
changed by deformations of the hypersurface through P on other points, for in that case
the local operators 7 ,(x') in (15) commute with T;;(P).

7. Scalar field

As an example we consider the Hermitian massless scalar field U with the Lagrangian
£ = 3% UUt

Expressed by the canonical momenta, the operator J and J, are

n? -
T = %(72 +g U,,,U"'> s Ta=3@U,+U n).

They have real expectation values,

o — 62 . 7 5 Yk
7 = \.;_gjq/* (U’aU"’— 2) YdUu, 7, = _f(»-— U, ¥—P*U. 6—) dU. (20)

goU su

The classical Klein-Gordon equation is completely equivalent to the first order system
of equations

T

a41'] = \7‘? ’ 6471: = \/—g_ n_l(nU,a)’a’

which is also valid for the expectation values U and 7 in the quantum theory.
We calculate the expectation values (20) for a special state of the scalar field in an
external Friedman metric

ds®* = —dt* + b3 (t)h,dx dx®

with spaces ¢ = constant of constant positive curvature. The function U(x) can be expanded
in terms of real spherical harmonics S,,°

U=YauS,y, A4Sy= —n(n+2)S,;, n=0,1,2,..., I=1..(n+1%
nd

¢ n, [ are no tensor indices here; [ labels the various eigenfunctions which belong to a fixed » (de-
generacy). 4 = Laplacian with respect to /gp.
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From a general theorem for spherical harmonics [12] follow the useful formulas

n(n+2)

2n*(n+1)72Y. 8L =1, 2n*(n+1)7? _S_ Su.aSuip = g
1

1

Owing to the orthonormalization of the functions S,, the expansion of the functional

derivative is given by
° _ Uk S ¢
su " da,,

nl

The probability amplitude is now a function (not a functional) of all the expansion coeffi-
cients a,; and of the cosmic time £. The Schroedinger equation is separable; ¥ is assumed
to be an infinite product of functions ¥,; satisfying the partial differential equation

oY, 1 82‘I’n,+ b (n4 a2
i = - — =5 + —n an¥,
ot 2 oar, | g T Mm T

for each pair (n, /). The state should have the same symmetry as the background space-
-time, consequently, ¥,, (# fixed) must depend on all coefficients a,, 7 =1 ... (n+1)3,
in the samec manner. The form of a Gauss distribution

Y, =wyexp(—31Aal), A +rAF>0 2

(w, normalization factor) is maintained in the course of time, but the functions 2, and w,
are time-dependent. The Schroedinger equation demands

idg—b"2A2+bn(n+2) = 0. (22)

For the special state (21) the expectation values (20) are

— - +1)?
T = Jg@2nb)? y (f_+%* [n(n+2)+b"*2,4F], FT.=0, (23)
P n
e N D D) 2
I b = v g gab(znb) 2"+): 3 - b4 .

The energy-momentum law (19), reducing in the Friedman metric simply to
‘7- = % g-ab:/Faba
can be verified by means of the equation (22).

The simultaneous system (22) and

SR
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with T given in (23) is equivalent to the Einstein-Schroedinger equations (16), (18) in the
case under consideration. The infinite sum of positive expressions in T diverges whatever
may be the behaviour of 4, for large n. Regularization or renormalization methods [13]
are therefore necessary in order to obtain regular energy-momentum expectation values.

8. Conclusions

The consistent basic relations governing the quantum field theory in curved back-
ground space-time are the commutation rules (8) and the generalized Tomonaga-Schwinger
equation (15). From these postulates we derived:

— the relations (11) in a space-time admitting a group of motions,

— the Schroedinger equation (16) with the Hamiltonian (7) for the time-dependence
of the probability amplitude,

— the validity of the compatibility conditions (17),

— the statement that the expectation values satisfy the corresponding classical equations,
especially the energy-momentum law (19),

— the statement that the local expectation values do not change when one deforms
the hypersurface on other points.

Finally we investigated an example: scalar field in a Friedman metric. The simultaneous
system of equations (16) and (18), which we called Einstein-Schroedinger equations,
describes the interaction of the classical gravitational field and the quantum field via the
encrgy-momentum expectation values which must be regularized.

The application of the quantization precedure to fermion fields needs further investiga-
tions.
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