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The shell model with MSDI residual interaction is used to investigate properties of
levels in the #2Ca and “2Sc nuclei. The 4°Ca core with two active outer nucleons is assumed.
The interaction between two outer nucleons is given. The numerical values of 196 two-
-particle antisymmetrized matrix elements were calculated. Two different ways were used
in the construction of the interaction term: a) The parametrs 4, and 4, were considered to
be state independent, thus being constant in the configuration space, b) The parameters
Ao and A, were allowed to vary in the dependence of the combination of j values. In order
to simulate this dependence three values for A, and A4, were fitted. The reasons of this assump-
tion are discussed. In the calculations performed in these two versions the parameters Ao
and A, were adjusted to produce the best agreement with the experimental level schemes.
The energy matrices were diagonalized and the calculated level schemes for both *2Ca and
428¢ nuclei are presented. In the both nuclei the density of the calculated levels is significantly
less than of the observed levels. This fact leads to the conclusion that some core excitation
models play an important role in the formation of low-lying states in the *Ca and *2Sc
nuclei.

1. Introduction

Many observed properties of nuclei can be successfully described in the framework
of the classical shell model. This model uses two principal assumptions:

1. There exists an innert core, made of closed shells, which acts with central forces
on valence nucleons, and

2. there exists a residual interaction caused by two-body forces acting between the
valence nucleons.

This latter interaction, in contrast to the interaction between electrons in the atom,
is not weak and thus cannot be treated as perturbation. Because neither of these forces
is well known, it is necessary to make simplified assumption concerning them both.
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The simplest and somewhat idealized form of residual interaction is the surface delta
interaction (SDI). This form was proposed in 1966 by Moszkowski and co-workers [1]
and developed by Glaudemans {2-4] who introduced the isospin dependence in the matrix
elements of the two-body interaction. This method, called the modified surface delta
interaction (MSDI), has proved in several studied [5-14] to be successful in reproducing
many nuclear observables.

In the work presented in this paper the MSDI method was apptlied to the investigation
of states of the #2Ca and %2Sc nuclei. According to the simple shell model picture, these
nuclei are described in terms of two valence nucleons outside the doubly closed 1d-2s
shell — considered in the following as an innert core.

The energy levels of these nuclei were often utilized {15-18] for extraction of effective
two-body interaction parameters then being used in calculations of energies of heavier
nuclei belonging to the 1f~2p shell.

Several investigations have been undertaken to describe the states of *2Ca and #2Sc
in terms of the simple shell model [19-30]. Various forms of two-body interaction were
employed. However, neither the empirical two-body interaction parameters found by
least squares fit to the known levels of Ca isotopes (Engerland [19], Dieperink [31]), nor
that realistic calculated by Kuo and Brown [30}, were able to reproduce the experi-
mental level scheme. 1t appears that some core excitation effects play here an important role.

We decided to perform the shell model calculations on the full basis of Pauli allowed
states for two-valence nucleons distributed in the 1f;,,. 2p3,,, 2py)2, and 1f;s,, orbits
outside the 4°Ca core. The existing studies on the lighter [5-11] as well as on the heavier
nuclei [12-14] have shown that the shell model with MSDI is able to predict all observed
phenomena such as energy levels, spectroscopic factors, multipole moments, and electro-
magnetic transition rates. It appears from these studies that this form of interaction is
no Jess valuable than other, more.complicated. forms of interaction. In particular the
microscopic calculations performed in a large model space are able, as was shown in
a few recent works [6-8, 10, 32-34], to account for the core excited phenomena. Some
structure properties of nuclei, belonging to 1d-2s shell and known as deformed nuclei,
have been predicted in this way.

The purpose of our work was:

(/) to check whether the MSDI two-body matrix-elements are correlated to the
empirical and realistic ones as was done in the case of the 14-2s shell [6, 7, 9]. Hitherto,
nobody has proved that this correlation persists also in the case of the 1/~2p shell;

(i) to prove the validity of MSDI residual interaction in describing the properties of
nuclei belonging to the 17-2p shell when the configuration space is extended to a larger
number of orbits.

2. The surface delta interaction

Residual nucleon-nucleon interaction is that part of the interaction which is not
included in the central average potential. In consequence of the Pauli principle, most
inelastic collisions inside the nucleus are prohibited. Therefore the nucleons move almost
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freely in the nuclear matter and the effective interaction between the nucleons occurs
mainly in the nuclear surface. Using this assumption, Moszkowski and co-workers [1]
have proposed a simple model., able to describe the interaction between the valence nucle-
ons. This model of interaction assumes that

1. The residual interaction V,, between particles a and b takes place at the nuclear
surface only;

2. The two-body forces are delta forces, i. e. the interaction takes place only if the
two nucleons are in the same place:

Vg = —dm AXR2,) M

where 4 represents the interaction strength and Q,, is the angular distance between the
interacting particles. The factor 4x is introduced for normalization purposes;

3. The radial one-particle wave functions of the active shell have the same absolute
value at the nuclear surface, i. e. V,, does not depend on /.

Interaction defined in this way possesses all the features of pairing interaction. It is
short-ranging and allows only symmetric spatial states. It should be pointed out that the
SDI exists not only between particles coupled to J = 0, T = 1, but also between particles
coupled to J # 0. Unlike pairing, SDI interaction acts also in states with T = 0. Therefore
the SDI should be a better approximation then a purc pairing one. Following the work of
Glaudemans [3] where the isospin dependence of the interaction was taken into account,
the interaction may be written in the form

Va[MSDI] = —4nA473(2,)d(r,— R)3(r,— R)+ Br, - 1, )

where r,, r, are the position vectors of interacting particles, R is the nuclear radius, t are
isospin operators. The strength of interaction A4;, where T = t,+1,, depends on the
isospin of interacting particles. The correction term Bz, - 7, is introduced to account for
the splitting betwcen the groups of levels with different isospin. The eigenvalue of the
operator product 7, - 7, is found from the relation

T? = 2412 +21,1,
Taking into account that ¢t = 1/2 7 and 7, = £, = 1/2, one obtains

T(T+ D)= t,(t,+ D—t,(t,+1)  2T(T+1)=3
ﬂb p—vg =
2 4

&)

and
T, Ty, = 2T(T+1)-3.
Such a form of interaction is called Modified Surface Delta Interaction [MSDI].
In the simple case of two valence nucleons outside the closed shell the Hamiltonian
is given by
H = 11core+E(ja)+ E(.]lz)+ <jajblVabchd>’ (4)

where E(j) are the single particle energies. The antisymmetrized matrix element of V,,
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is given (see Ref. [3]) by

N Ar Qi+ D 2y +1) Qi+ D 2+ 172
{Jadb\ValJciadsr =

T 2027 +1) (1+8,,) (1+3_,)
x [(— Dt Prietiax o 4 jy—3J0) o 3 ja—HJI0) {1 —(—1)e*tat+T}
a3 (et ja= 3L {1+(= DT} +[2T(T + 1)~ 3]1B3,.Sps &)

where {j}j,—%|JM> are the Clebsh-Gordon coefficients and j,j,j.j, are the spin
states of particles. Correspondingly, J and T indicate the spin and isospin of a two particle
state. The diagonal matrix elements with j, = j. and j, = j, correspond to pure states.

In the case of pure states, the excitation energies are given by the difference between
the binding energy of the i-th level and the binding energy of the ground state. When
configuration mixing is considered the energies are obtained by carrying out the diagonal-
ization of energy matrices.

3. Calculations and results

The numerical values of 196 two-particle matrix elements were calculated according
to the formula (5) for both the 7 = 0 and T = 1 states. The parameters E(j,) and E(j,)
were taken from single particle states of “'Ca and #!Sc nuclei. They are equal to those
used by Kuo and Brown [30].

Two different ways were used in the construction of the interaction term (5) in the
Hamiltonian (4):

a) The parameters 4, and 4, were considered to be state independent, thus being
constant in the configuration space. This is an essential postulate of the pure MSDI model.

b) The parameters A, and A4, were allowed to vary in going from state to state.

In calculations performed according to the first way the parameters A, and 4, were
adjusted to produce the best agreement with the experimental level schemes. The energy
matrices were diagonalized and the calculated level schemes for both “2Ca and #2Sc nuclei
are presented in the second column on Figure 1. In the case of the ?Ca nucleus the sequence
of levels (except for the second and third excited states at 1.84 and 2.42 MeV, which are
known to arise from core excitation) is satisfactory. The energy lowering of the first 2+
experimental state may be due to its interaction with the core excited second 2* state at
2.42 MeV. The calculated level scheme of the 42Sc nucleus roughly reproduce the observed
level sequence and is less successful in reproducing the energies. The first 3* state lies
below the well-known 7+ state, which together with the first 1+ state forms a close
energy doublet at 0.6 MeV in the experimental scheme.

In the calculations performed in the second way the state dependence of the inter-
action was taken into account by changing the parameters A, and A;.

The nuclei belonging to the 1f—2p shell may be more deformed than those belonging
to the 1d—2s shell. A coefficient resulting from this dependence may be for the former
nuclei different from that for the latter, which is equal + 1.
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In order to account for this effect the overlaps of four single particle wave functions,
I = [R(r)R(r)R(r)R(r)dr appearing in the matrix elements {j,j,Vij.j> were
calculated. The Saxon-Woods potential with parameters

U{MeV]

W{MeV]

r, [f]

rw [f]

a, [f]

a, [f]

re If]

51

13

1.250

1.250

was utilized to generate the radial functions.

The numerical values of these overlaps exhibit three distinct groups depending on
the combination of j-values (Figure 2). In order to simulate this geometrical effect, thiee
corresponding values of Ay for both T = 0 and T = 1 were fitted by varying the parameters
Ar between 0.35-0.95 MeV. The best results were obtained with the values 4, = 0.65 —

0.650

0.470

1.250
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—0.55—0.45MeV and A4; = 0.70 —0.60 — 0.40 MeV. The method of fitting the
parameters A, to the single particle matrix elements is shown in Figure 3. Parameter B
is chosen to be equal 0.20 MeV. The parameters E(j,) and E(j,) were taken to be the same
as in the method a). The results are shown in the third column of Fig. 1.

4. Discussion

In both nuclei the density of calculated levels is significantly less than that of observed
levels. This fact leads to the conclusion that some core excitation modes play an important
role in the formation of low-lying states of the nuclei 2Ca and #2Sc. In particular, the
states 0+ at 1.84 MeV and 2+ at 2.42 MeV in #2Ca must be predominantly core excited
and therefore they cannot be described by the model used here. The radiative transition 0+
1.84 —» 2+ 1.52 MeV in #*Ca is larger than that given by the single particle estimate by
a factor of 15 (Bertsch [35]). The #?Sc nucleus is an unstable nucleus. It is strongly deformed,
hence many so-called “‘intruder states” appear in its energy level scheme.

One of the most probable modes of core excitations is the formation of the 4p—2h
configuration in which two nucleons are promoted from the 1d;,, or 2s,,, orbit to the
1/7;2 orbit. In the particular case 7 = 0 a weakly bound alpha cluster is created [37].
This model, applied by the authors of Refs [25, 36, 42], has led to excellent reproduction
of the low-lying states of 42Ca and #2Sc nuclei.

We have made a careful comparison of the MSDI two-body matrix elements with
those obtained in another way. We have found that the deviations of the MSDI matrix
elements of the 1f—2p shell from the empirical or realistic oné is much larger than in the
case of the 1d—2sshell discussed in [6, 7, 9]. The reason lies in the fact that the empirical
and realistic two-body interaction parameters absorb the core excitation effects and thus
can better reproduce the experimental states.

On the other hand, the MSDI calculations can give a good agreement for the pure
single-particle states. The MSDI parameters are derived on the assumption of a pure shell
model and do not absorb the core excitation effects. Therefore they cannot reproduce
states in which the core excitation phenomena play an important role. The introduction
of the variable 4, parameters leads to the correct level sequence in the #2Sc nucleus. The
fact that the deviations from the experimental results of the MSDI calculations in the case
of the 42Ca and *2Sc nuclei are much greater than in that of the 1d—2s shell, leads to the
conclusion that the coré¢ excitation admixture in both 4 = 42 nuclei is more important
than in the nuclei belonging to the 1d—2s orbit.

The MSDI method can be used as a good instrument for reproducing the single-
-particle levels in the 1f—2p shell. From the range of deviation we can also estimate the
dimension of the core excitation admixtures.
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