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The three classes of axially symmetric space-times, corresponding to homogeneous
cosmological models which are filled with perfect fluid are studied in the framework of the
Einstein-Cartan theory of gravitation. A general set of equations is given with the admissible
non-vanishing torsion and spin components compatible with the symmetry. This is further
specialized to the “‘generalized classical description™ of spin, and the “classical description®
with only one surviving spin tensor component. Closed and open models have to be neces-
sarily shearing while Euclidean models admit also a zero value of shear. A general expression
for shear in all classes of models is derived; it is helpful in proving that the singularity may
be prevented in the Einstein-Cartan theory thanks to the repulsive spin-spin interaction.
This is possible even in those semiclosed models which do not permit any simply transitive
group of motions; they may constitute authentically pulsating models with shear and torsion.

1. On the departure from spherical symmetry in cosmology

It is our aim to give an account of a systematic application of the Einstein-Cartan
theory (Hehl 1973, 1974; Trautman 1973a; Kuchowicz 1975a) to cosmology in order
to show explicitly how the singularity can be prevented in it. We deal with spatially homo-
geneous cosmological models; these models may be characterized by an isometry group
with 3, 4 or 6 parameters. The symmetries following from the existence of the Killing
vector field in the space-time under study refer not only to the metric tensor g;;, but also
to the torsion tensor Q; and spin angular momentum density tensor s*. This is the
standard approach adopted by the Warsaw group (e. g. Kopczynski 1973; Tafel 1973).
We adopted it in our three previous studies (Kuchowicz 1975 b, ¢, d), and we call cosmo-
logical models based on it the aligned spin models. The difference between the aligned
spin models and the random spin models is explained in two other recent studies (Kuchowicz
1975e, f). Let us mention here that the random spin models are based on the micro-
scopic approach to the Einstein-Cartan equations which is vividly advocated by Hehl’s
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group (Hehl et al. 1974; Hehl 1975; von der Heyde 1975). In the latter approach, these
equations are looked upon as describing correctly the gravitational properties of matter
at a microphysical level, while from some averaging procedure one arrives at Einstein’s
equations with some correction terms resulting from microscopically fluctuating spin and
torsion.

When the isometry group has 6 parameters, this gives us the Robertson-Walker models. Spherical
symmetry characteristic for such models cannot be reconciled with the “‘classical description™ of spin for
aligned spin models (Kopczynski 1972; Kuchowicz 1975b, ¢). The Robertson-Walker models admit only
a random distribution of spin which is able to prevent a singularity (Kuchowicz 1975f). But when we are
interested in aligned spin models, we have to start in the Einstein-Cartan theory with models admitting
a 4-parameter isometry group as the models of highest symmetry. Such models have already some degree
of anisotropy. When we look at the list of all possible 4-parameter Lie algebras (e. g. in Petrov 1966),
we find that each of them has at least one three-parametric subgroup. The latter subgroup may now act
either in 3-dimensional subspaces, being thus simply transitive, or in two-dimensional subspaces, being
multiply transitive. The second case (of 2-dimensional surfaces of transitivity of the 3-parameter group)
corresponds just to axial symmetry which is of interest for us in this paper.

The case of axial symmetry corresponds to the most simple extension beyond
the common assumption of a complete homogeneity and isotropy. Now the isotropy is
partially violated: two spatial directions are locally equivalent while the third is not so.
Such models have been studied in the framework of general relativity by Doroshkevich
(1965), Shikin (1966) and Thorne (1967). Exact solutions of the Einstein equations for
dust matter have been found by Kantowski and Sachs (1966), and compared with the
Friedmann solutions both of open and closed types. Further solutions are given in the
thesis of Kantowski (1966). A systematic investigation of the models in case has been
made, finally, in general relativity by Vajk and Eltgroth (1970) for the case of a y-law
equation of state: p = (y—1) ¢, with 1 <<y < 2, where p is pressure, and ¢ — energy
density; the reader is referred to their paper for further references.

In the most general case, it is possible to resign from any relic of isotropy, and to
study completely anisotropic models, as it was done by Jacobs (1968) for Bianchi type I
cosmologies. Yet in our systematic search for exact non-singular solutions of the Ein-
stein-Cartan equations, and taking into account the relation between the concept of
axial symmetry and of spin, it seems appropriate to start our investigations with the
spacetimes of axial symmetry. The number of the components of the torsion and spin
density tensors corresponds to the symmetry of the space-time. Later, to provide some
practical estimates we reduce their number to the only non-vanishing component which
remains in the “classical description” of spin. All our notation, terminology etc. follows
closely that of the preceding part (Kuchowicz 1975c), and we are to define only those
specifically new quantities which appear for the first time in this part of the paper.

2. Three types of axially symmetric space-times

In our study we are dealing with those spatially homogeneous cosmological models
which allow for a 4-parametric group of isometries with a multiply transitive 3-parametric
subgroup. The properties of these models, within the framework of general relativity,
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are listed most completely in the thesis of Kantowski (1966). Let us summarize them
briefly for our aims.

The two-dimensional orbits of the three-parametric subgroup are locally the sphere,
plane and pseudosphere, corresponding to the Lie algebras which are usually applied to
describe the Bianchi types IX, VII, and VIII, respectively. Let us denote the three different
situations by the symbols: S — spherical geometry, F — fiat geometry, H — hyperbolic
geometry. Then we have the following four-parametric Lie algebras for the three cases:

S [ X, Xl = X5, Xo, X5]l=4%,, X5, X ]=X,, [X,X,]=0, 2.1
F:[Z,,Z,] =25, [Z,,Z35]=0, {Z,, Zl] = ~Z,, 1Z;,Z,] =0, 2.2)
H: Y, Y,] =Y, [Y,,Ys]l= —Y;, [Ys,Y,]1=2Y,, [Y;,7Y,]=0. (2.3)

In each case, the first three generators of the group are acting on a two-dimensional sur-
face. But only in case S the resulting four-parametric algebra (2.1) has no other subalgebra
than the initial one (consisting of X, X,, and X3). In the two other cases there exist three-
-parametric subalgebras different from the initial one; they are: of Bianchi type I in case F,
and of Bianchi type Il in case H. Onle the case S is left outside the Bianchi types, as we
have to do with such spatially homogeneous models which do not allow for a simply transi-
tive group of motions. In general relativity, the formalism of Heckmann and Schiicking
(1962) cannot be applied to case S, which was studied extensively by Kantowski (1966)
and Kantowski and Sachs (1966).

In spite of the fact that with respect to group properties there exists an essential
difference between the ‘‘closed” (or rather semiclosed) models of type S, and the “flat”
and “open” mcdels (types F and H), it is possible to go forward with quite analogous for-
mulae for these three cases. The common feature of all the models to be studied here is
that they have two equivalent “‘tangential” directions, and one inequivalent “longitudinal’
direction at each point in space-time. To be able to treat all these models at equal
footing, we attribute the following set of orthogonal basis I-forms to the three models
under study:

S F H
0 = Xdx Xdx Xdx
62 = Ydo Ydy Ydo
6% = YsinOdg Ydz Yshfdg
64 = dt dt dt 2.9

The corresponding Killing vector fields are given in Appendix I. From now on numerical
indexes refer to the forms. The independent non-zero components of the torsion tensor
Qijk are (for the three cases under study):

A= Q114, B = les: C= Q212 = Q313, D = Q213 = ~‘Q312, (2-5)
E = Q224 = Q334’ F= Q234 = —Q324; G = Q414’ H = Q423-

These are the components with the same numerical indexes which are non-vanishing in the
case of spherical symmetry (Kuchowicz 1975¢c), of course, for the identification of the
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basis 1-forms as given there. The fact that we have no more components now, points
to the fundamental role of the axial symmetry while dealing with spin and torsion.

From the algebraic part of the set of the Einstein-Cartan equations we are able to
express the independent, non-vanishing components of the spin angular momentum density
tensor sijk in terms of the torsion components:

8nGsl,, = —2E, 8nGs',; = B,
81Gs?,, = 8nGs®, = —C—G, 8nGs?,; = —81Gs?,, = D, (2.6)
8nGs2,, = 8nGs3y, = —A—E, 8nGs2,, = —8nGs3,, = F,
8nGs*,, = —2C, 8nGs*,5 = H.

This set of relations has the same form as in the spherically symmetric case. G denotes
here the gravitational constant (in order to distinguish it from the torsion component G).
When, for practical aims, we go over later to the “‘classical description” of spin, there
remains only the non-zero component 5%, 5, and correspondingly, the torsion component H.

3. The general set of equations

With the i-forms given by Eq. (2.4) we are going to calculate the connection 1-forms
and curvature 2-forms in the same way as we have done it in preceding papers (Kuchowicz
1975b, ¢). The resulting, rather long expressions are collected in the Appendixes. We use
them to give here the final expressions for the remaining Einstein-Cartan equations, apart
from the algebraic set (2.6). The underlying physics is much the same as in our preceding
investigations, i. e. the symmetric energy-momentum tensor is that of a perfect fluid of
energy density ¢ and pressure p, and comoving coordinates are used for matter (with only
u* # 0 as the non-vanishing component of the 4-velocity of matter). It is important to
emphasize that though the fluid motion is anisotropic, the pressure is isotropic in our
models.

With these assumptions, Eq. (1.6) of the preceding part of the paper does not vanish
trivially for the following sets of indexes “#j”: 11, 22, 33, 44, 14, 41, 23, 32, and we
arrive at a resulting set of 6 equations. Three of them are the ““diagonal” equations (from
the diagonal terms of the energy-momentum tensor):

snco= (25 e V1 2 oY armea Xe
e = Y( XYy X
+24E+} B*+BD—~C*+E*+1 FH+L H?, (3.1)

$nG LYYV e 2E+2EY
TPE LY T\Y) Ty Y

+1B*+C*+2CG—E*+}FH+1 H?, (3.2)
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8nG y_x_Xxv A—E—(A+E) +Y
TPE T YT X T Xy
—AE—-1B*—1BD+CG+1 FH+} H™. (3.3)

By subtracting from each other the expressions for the ““14” and ““41” components we get
the algebraic condition
EG = AC 3.4)

while by summing up these expressions we get the following relation
. X Y Y
—C+C Ak +GY +2AC+1 BF+3BH+1 DH =0, 3.5

Another algebraic relation, finally, is obtained from the equations for the 23" and ““32”

components
B(2C+G) = HQE+A). (3.6)

The conditions (3.4) ... (3.6) have the same form as in the case of spherical symmetry
in the preceding part of the paper. The only difference with the equations (2.11), (2.13)
and (2.14) of that paper is the present independence of the quantities in the equations on
the radial variable, which is natural in a homogencous cosmology.

It is natural to demand that the two formulae (3.2) an (3.3) express indetically
the same physical quantity — the pressure; from the equality of the right-hand sides
of these two formulae we get the pressurc isotropy condition

Yy X Y\° XYy ¢ . . X Y
P s aea(t )
Y X Y XY Y X Y

Y X R R )
+E(3 5~ 1) ~AE-}B'~1 BD-C'~ CG+E* = 0. (3.7)

It is easy to see that for vanishing torsion, our formulae for the S and H cases reduce
to the closed and open models of general relativity (Kantowski and Sachs 1966). When
we restrict ourselves to the “‘classical description” of spin, with H as the only surviving
torsion component, our general expressions for the flat metrics (case F) reduce to those
of Kopczynski (1973) for Bianchi type 1 models.

4. The set of equations with the condition s'; = 0

The most general set of equations (3.1) ... (3.7) is of low practical use as there are
too many torsion components in it to make a physical interpretation easy. Now, a signi-
ficant reduction of these components which is sufficient for our aims occurs when we take
into account one of the conditions which are applied in the “classical description” of spin
which we used earlier (Kuchowicz 1975b). This is the reasonable condition

sy =0 “@.n
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which, with the use of the relations (2.6), makes the following four torsion components
to vanish: 4 = C = E = G = 0. Now the conditions (3.4) and (3.6) are automatically
satisfied, and the remaining equations may be given the relatively simple form, in terms
of the characteristic kinematic quantities of the motion of the cosmological fluid: expansion
© and shear . These quantities are defined in the standard way (see e.g. Ellis 1971), and
for our three axially symmetric space-times they turn out to be equal to
o X ¥ X1y

_3{.+?, a_3<)—(-—§). (4.2)
The density and pressure are expressed in terms of them and of the remaining torsion
components

87Go = 1 ©* -6+ 1 B>+ BD+4 FH+1 H?, (4.3)

N . 2 .
82Gp = —+ 20 +0%)—0’+ — (64 O0)—

J3 Y?
+1B*+1FH+1H (4.4)
The pressure isotropy condition (3.7) reads now
_ . £
J3[Oc+06] = 72 —1 B*—~1BD, 4.5)
and the remaining algebraic condition (3.5) is now reduced to
BF+BH+DH = 0. (4.6)

If either B or H is zero, then Eq. (4.6) shows us that there are at most two non-vanishing
torsion tensor components, and these may be arbitrary. When either B or H is different
from zero, this equation gives us one of the other torsion components in terms of the
remaining ones. This equation does not give us any condition in the classical description
of spin, when only H differs from zeio. In the last case we have an especially simple form
of the contracted Bianchi identities

d 87G H: R*| + | 8xnG H7 dRY 0 4.7
— o— — - = .
AN P ’ )

: i o : R
where the length scale R is related through its time derivative to the expansion @ =3 z

and in view of Eq. (4.2) we have simply R® = XY?2. R corresponds to the radius function
in the Robertson-Walker metrics, and characterizes a direction-averaged rate of change
of mutual distances in cosmology at a given instant of time.

When only H remains as the single non-vanishing torsion component, both equations
(4.6) and (4.7) are identically fulfilled, and imply no additional constraint. The situation
is a little more involved in the general case considered in this section. We do not write
out in length the generalization of Eq. (4.7) to this situation, as it is sufficient to point
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only to some conclusions concerning the admissible number of independent torsion
components. Both the contracted Bianchi identities and the algebraic condition (4.6)
are fulfilled identically by the following choice of the torsion components (valid within
our initial condition s%; = 0): F =0, H and B = —D — arbitrary. In the following
we call this the “generalized classical description” of spin, as it corresponds just to a generali-
zation of the “classical description” which we considered earlier (Kuchowicz 1975 ¢).
While the torsion component H is proportional to the density of aligned (along the
distinguished axis No. 1) spin angular momentum, the other possibly non-vanishing
torsion component is locally proportional to the flux of spin angular momentum perpendi-
cular to a 2-surface; this interpretation is evident from the set of equations (2.6).

It might be possible to insist on non-zero F, but this would bring us too far from
the classical model of spinning point particles. Within the special relativistic treatment
of angular momentum (see e.g. Box 5.6 in Misner et al. 1973), the angular momentum
3-tensor components s2;, and s3,, (which are proportional to F) are related not to the
intrinsic angular momentum but to the centre of mass motion.

In the following we restrict ourselves mostly to the “classical description” of spin,
with only H # 0, as this will be sufficient for our aim which is to look for the possibility
of a prevention of the singularity by the H? term, resuiting from an alignment of spins.
Some of the results (e.g. those from the subsequent section) are valid also in the wider
context of the ‘‘generalized classical description” of spin.

5. Pressure isotropy condition, and the behaviour of the shear

Some general features of the axially symmetric models under study follow from
a consideration of the pressure isotropy cendition (4.5), in which the last two terms (with
torsion components only) cancel for our “generalized classical description” of spin.
This equation may be now integrated easily to get the following form of the shear
a) for flat models (¢ = 0):

%o
o= FER o, — constant, (5.1)
b) for closed or open models (¢ = +1):
* | Xt (5.2)
G = ———3 . .
V3R

These expressions do not differ in form what may be obtained in general relativity.
While the Universe expands, the shear can only gradually diminish in flat models. The
behaviour of the shear in other classes of models is complicated by the presence of the
integral over the metric function X (corresponding to the spin alignment axis in the Einstein-
—~Cartan cosmology).

Only for the flat models under study we are able to assume that the shear may vanish
at all. This would give us the subclass of metrically isotropic models, possessing an axis
of spin alignment. Incidentally, the expressions for energy density and pressure of these
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flat, non-shearing models coincide with the expressions for flat Robertson-Walker models
of the third class of extension to the Einstein—Cartan theory, which were studied in the
first part of this paper (Kuchowicz 1975 c). Of course, the components of the torsion
(though having formally the same indexes in the two papers) are related in each case to
the corresponding metric. The length scale X (which equals ¥ for this subclass) replaces
the radius R from the Robertson—-Walker metric.

The assumption of vanishing shear would lead to an essential contradiction in Eq. (4.5) withe = +1.
Open and closed models of this paper have to be necessarily shearing. In the framework of general relativity,
they have been studied by many authors, where they were shown to be singular. The initial (and, for closed
models, also the final) state corresponds to a zero volume and infinite density. Very often, an infinite value
of the expansion @ is accompanied by an infinite value of the shear . Flat models with o, # 0 have, within
general relativity, of course an infinite initial shear. In general relativity attempts have been made to clas-
sify the singularity in anisotropic flat models (Thorne 1967; Jacobs 1968). One distinguishes between point,
cigar, and barrel or pancake singularities for the flat metric (2.4): As we approach the singularity, we may
have X - 0, Y — 0 (point singularity), or X — o0, ¥ — 0 (cigar singularity), X — 0, ¥ — ¥, (pancake
singularity), or X — Xy, ¥ — 0 (barrel singularity). We will use these concepts when studying in the fol-
lowing section the behaviour of the integral in the expression (5.2) in relation to the possibility of a preven-
tion of singularities in the Einstein-Cartan theory. It is possible to express here the following statement
concerning the behaviour of the shear while approaching the singularity: The integral [X(¢)d? is always
finite provided the singularity constitutes an extension (to the non-Euclidean space-time in case) of the
poin, pancake or barrel singularity. This feature cannot be generalized straightforward to approaching all
possible cigar singularities.

6. May the singularity be prevented in axially symmetric models?

It was pointed out by Tafel (1973) in the framework of the “classical description” of
spin, that non-singular medels of the Bianchi I to VIII types are possible. All these Bianchi
types are characterized by either zero or negative curvature scalar, and one may - wonder
whether the same mechanism of preventing a singularity to cccur in the Einstein—Cartan
theory could work in a space of positive curvature for which the proof did not apply.
Now, our case S correspends just to a posiiive curvature scalar (which, for the space part
of the metric (2.4) with signature (+ + +) is equal to 2/Y?). It is cur aim to show that
the case S allows for non-singular cosmological models. The possibility of such models
for the two other cases with the “‘classical description” of spin results from Tafel’s proof
because the homogeneous spaces of these models are among the Bianchi types I to VIIL
It is possible, of course, to prove directly this possibility. We refer here to the proof for
flat models which is given elsewhere together with some exact solutions (Kuchowicz 1975 d).
In the following, we restrict ourselves to the case of non-Euclidean models which might
be treated in parallel.

Let us consider a linear equation of state of the type used by Vajk and Eltgroth (1970)

p=(—-Do, with 1<y=<?2. 6.1)

For y = 1 this gives pressureless dust, for y = 4/3 — radiation; the limiting case of y = 2
(which we do not consider in this paper) gives us Zel’dovich’s stiff matter. We restrict
ourselves to the classical description of spin, i.e. we put F = B = D = 0 in the expressions
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for density and pressure. When we insert Eq. (6.1) into the contracted Bianchi identities,
we get by a simple integration the two conservation relations (for energy density and
for spin density, because H is actually proportional to the only spin component §,3):
~ A H,

8nGo

e=gw =% 62)

where 4 and H, are constants. With the use of Eq. (5.2) and (6.2), and of the relation:
© = 3R/R, we get from Eq. (4.3) the following expression
32 3G -1 H(Z) 1 pA 3(y~2)

A = (BR*R+eX)R™" "+ [—4— -3 (§ X(n)dr) ]R e 6.3)
Since A is a positive constant, the right-hand side of this equation should be necessarily
constant, at an arbitrary instant of time. Were it not the last term which is due to the spin-
-spin interaction, such a constancy of the right-hand side could be achieved even at the
instant of a singularity (because even in the worst case we had to subtract from each other
two infinite quantities, and this could yield us a finite value). Now, the role of the spin-spin
term is to make such a procedure impossible, and to show us in this way that a singularity
cannot be admitted.

Let us concentrate on the case with ¢ = +1. If we could succeed in proving that the
term in square brackets is always positively defined, this would be sufficient to demon-
strate the inadmissibility of the singularity (i.e. of the value R = 0), otherwise the whole
right-hand side of Eq. (6.3) had to go to infinity with R approaching zero. No possibility
of subtracting infinite values remains, as in this case all the other terms in the right-hand
side of Eq. (6.3) are non-negative.

The value of the integral |Xdr turns thus to be decisive in the problem of singularity.
In the much simpler case of the flat space-time (Kuchowicz 1975 d), we had a shear-
-induced constant instead of this integral, and we were able to predict that a singularity
cannot occur if the constant HZ/4 arising from the spin-spin interaction is larger than
the shear-induced constant. With the latter constant being sufficiently large, the effect of
shear could overwhelm that of the spin (and torsion), and a singularity could be possible.
An analogous situation can occur for our ‘“‘closed” models. The expression in the square
bracket in Eq. (6.3) is always positively definite provided the inequality holds

H - t
S 3> I Xl 6.4)

which means that the constant HZ should be sufficiently large (but finite). This occurs
provided we have o > —1 in the leading term of the asymptotic expansion of X(7) near
the initial point of the time scale: X(r) = Xot*+... (as the integral [r"dr goes then to zero
with r — 0, and only the integration constant in the right-hand side of Eq. (6.4) remains).
Without the knowledge of any exact “‘closed” model of axial symmetry in the Einstein—
Cartan theory, we are able only to look at the exact solutions of general relativity, and
we may say that if some kind of singularity cannot be removed by the spin terms, this
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might be only a kind of cigar singularity with the exponent « < —1; but we do not know
of solutions with such “inevitable” singularities,

Though we are unable in the most cases to integrate explicitly the equations (4.3) and (4.4), or Eq.
(6.3) to obtain singularity-free generalization of known solutions of general relativity, we can find which
of these solutions can be thus generalized to non-singular Finstein-Cartan models. All such solutions for
which the metric function X(¢) while approaching singularity behaves as %, with @ > —1, allow for a ge-
neralization to non-singular solutions. Actually, all “‘closed” models of Kantowski (1966) and Kantowski
and Sachs (1966) satisfy this condition, and can be “regularized” by spin-spin interaction to non-singular
models. Let us give two examples:
1. Solution for dust matter (Kantowski and Sachs 1966)

7
X =14+n+b)tgn, Y = acos®y, t = a(n-+3%sin 2y), — 5 < b<0.

I1. Solution for a radiative universe (Kantowski 1966)

X=a —— —1] ,Y=a]ll—-{— — 1 sa# 0.
t a a

Both cases correspond to an initial cigar singularity with « = 1/3 which may be removed by the spin-spin
interaction. In case II the final singularity (for # = «) is of a point type, but also may be removed. While
in general relativity both these models start and end in a singular state, they may be generalized in the
Einstein-Cartan theory to authentically pulsating universes which never go across singular states. The
expressions given above have to be modified only for rather short periods of transition through the
state of highest (but not infinite!) compression.

The proof for ¢ = —1 may go along similar lines, but it is not necessary to make
it, as the possibility of non-singular open models of axial symmetry follows from Tafel’s
result (1973).

Now, in our indicating the existence of non-singular models with spin and torsion
we relied on the two cxpressions (6.2) for which the contracted Bianchi identities are
identically fulfilled. These relations are, however, no necessary condition in our theory,
and it is possible to resign e.g. from the spin conservation relation as we have done it
in our earlier studies on spherical symmetry (Kuchowicz 1975 b). Since we are then not
allowed to use the expressions (6.2), we have to apply our equation of state of the form (6.1)
directly to the expressions which are given by Eq. (4.3) and (4.4). We find easily a first
integral of the resulting second-order differential equation for R(7); this is

. 2— : 72
R4 J R [_31 ( j th) +e(y—HXR + KTHZRG] dR=C, (65

where we may consider X = X(r) as some involved function of R, while R depends on .
Now it is possible to prove under what conditions our Eq. (6.5) has a non-singular solution
R = R(r). It is sufficient to assume that its solution R is singular, i.e. it approaches zero
with t — 0 (it is always possible to shift the initial point of the time scale so that this is
true), and to arrive at some contradiction with the constancy of C. Now, near the singularity
the following behaviour of X, ¥, and R is possible

X >~ X%, Y x> Yytf, R~ Rt'PCT 4428 > 0. (6.6)
O
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Let us assume the following kind of asymptotic behaviour of H: H = H,/R’> (which
is a generalization of the inverse R® dependence for the spin conservation case). We find
that the last term in the square bracket in Eq. (6.5) dominates for ¢ approaching zero
provided the positive § fulfils the inequality

3p

6> 3+ ——
27 a+2B

6.7)
and that the whole integral term in Eq. (6.5) goes to infinity for + — 0 provided a second
inequality holds
3
0> 37+ a1 2p) (6.8)

Since the first term in Eq. (6.5) is always non-negative, we see that our non-singular solution
implies an infinite C which is impossible. Thus we can conclude that when the exponent §
in the expression for spin density exceeds a certain minimum value (i.e. it fulfils simultane-
ously the two above inequalities), the spin-spin interaction removes the singularity in the
Einstein—Cartan theory. As the second term on the right-hand side of the inequality (6.7)
may be larger than 3/2, we find that to remove in general a singularity from the cosmological
solution it may be sometimes advisable to consider a higher value of é than the value of
three which is used when spin conservation is assumed. Of course, all we give here are
only the sufficient conditions for the removal of a singularity, and it is already evident
from our prceding analysis of Eq. (6.3) that even with § = 3 we are able to remove the
singularity, at least in some cases.

Thus for all types of non-rotating models of axial symmetry it is possible to prevent
a singularity. This statement is essentially new with respect to the case S which constitutes
the first non-singular, and hence essentially pulsating type of models. These are at the
same time those spatially homogeneous models which do not permit a simply transitive
group of motions. It is sufficient to apply the classical description of spin to remove
the singularity. This contrasts sharply with the case of closed models with the same 4-para-
metric group, but permitting a simply transitive 3-parametric subgroup (Kuchowicz,
in preparation).

7. Some exact solutions

The non-singular solutions for flat models were given in earlier studies (Kuchowicz
1975 d, e). They are solutions of the equation of state p = (y—1)p, which yields after
a first integration an equation analogous to Eq. (6.3)

. A
R*R*7 24 5 R} = p, (7.1)

where D is an integration constant, and the quantity 4 is defined in terms of the spin
density constant H, and shear constant o, (from Eq. (5.1)): 4 <f H2/4—0). To admit
non-singular quasi-Euclidean solutions, the effect of shear should be overwhelmed by that
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of the spin and torsion, i.e. 4 > 0. Eq. (7.1) may be interpreted as an energy conservation
equation, with the term involving 4 being interpreted as a “‘centrifugal potential energy
term” resulting from the spin-spin interaction. For 4 = 0 we get non-shearing, for 4 < 0 —
shearing models of Bianchi type I, both of the same form as in general relativity, i.e. with
a singularity.

Eq. (7.1) admits non-singular solutions for 4 > 0 and 1 < y < 2, i.e. for all equations
of state of the type (6.1) except of the limiting stiff case, when the velocity of sound in
matter is equal to the velocity of light. This situation occurred for spherically symmetric
models (Kuchowicz 1975 b). For y = 2 the spin terms (H?/4) and shear terms on both
sides of the equation of state p = p cancel, and there remains —@ = @2, which yields
the singular solution R = Ryt'/® where we have used the second integration constant to
have minimum R at the origin of time. Though Eq. (7.2) may be solved in terms of elemen-
2(n+1)

+2
and the solutions which are given elsewhere (Kuchowicz 1975 d) are non-singular, the
prevention of singularity is no longer essential for sufficiently high values of R, when the
models behave asymptotically like general relativistic models

Ry, ~ Gy yD %% (72)

We see that for higher y, corresponding to a more ““stiff” equation of state, a lower expansion
rate is obtained asymptotically. The same asymptotic behaviour follows for all various
kinds of the dependence of spin on R, as the spin terms are essential only for small values
of ¢t and of R. While Eq. (7.1) and its exact solutions (Kuchewicz 1975 d) correspond to
the “‘conservation of spin” (H = H,/R?), we get for the general behaviour H = H,/R*
(when the spin density decreases faster) and zero shear g, = 0 the following solution

tary functions only for the following values of y: y = , with n=0,1, 2, ..,

\/ pR7— 2=V p2 _ 3.py. (1.3)
12y
The corresponding formula in the previous study (Kuchowicz 1975 d) was misprinted.
When we have to do with non-shearing models, we are allowed to assume also lower
increase of the spin density toward the most compressed stage of evolution of the universe,
and still we have no singularity. Let us illustrate this by a dust model (y = 1) with H
= HO/R2
VDR—3 HZ(DR+1 H3) = 3 D*. (7.4)
It is possible to compare two dust universes with H = H,/R™. We find that the amount
of cosmic time in which the given minimum volume is doubled, is larger for a smaller
value of the exponent m. This is the consequence of the higher importance of the “‘centrifu-
gal potential energy” in the case of higher m. After the initial volume has increased by
a factor of 103, the difference between various values of the exponent m does not play
any role any more.

So far we spoke of quasi-Euclidean models with a “classical description” of spin.
These models may be generalized by an inclusion of the B = — D terms along the lines
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given in Sect. 4. A semiclosed model expanding only in the “longitudinal” direction is
characterized by the following scale functions

X = X, ch Tyl Y,. (7.5)
Yo
This model is filled by a pressureless dust of energy density ¢ and spin density s4,5. Spin
conservation is not valid. The physical quantities are given by
~ 2 ~a 2

8nGp = 702— » 8nGs",3 =H = 70. (7.6)
The constant values of the physical densities in the overall expanding universe make it
unrealistic; nevertheless, it is the simplest case of a strongly shearing (62 = 160?%), non-
-singular universe. Just the constancy of Y together with the strong shearing makes this
models c¢xpand forever; it is found (Kuchowicz 1975 g) that only a sufficiently strong
magnetic field can make the model oscillate.

We are unable to present any other simple, non-Euclidean non-singular model. Numeri-
cal computations, in which the expressions of Kantowski (1966) would be the asymptotic
formulae to represent the soluiions of our theory very far from the initial stage of minimum
radius, should give us the behaviour of such non-singular solutions.

8. Final remarks

We put more emphasis on the general problem of preventing the singularity, than
on giving sets of specific solutions. For the first time, a possibility of having really pulsating
models has been demonstrated. Numerical studies on such models should be the next
stage.

1t is a pleasant duty to acknowledge the correspondence with Prof. F. W. Hehl from
the Technical University in Clausthal as a constant stimulus to the studies on the Einstein—
—Cartan theory. Thanks are also due to the participants of the cosmological seminar at
the Astronomical Obscrvatory of the Jagellonian University, to whom these results were
presented first.

APPENDIX I
Killing vectors, and general form of the torsion tensor

We give below the sets of generators of the groups of motion corresponding to the
three cases under study:
1) case S: “closed” models with the Lie algebra given by Eq. (2.1);
2) case F: “Euclidean™ models with the Lie algebra given by Eq. (2.2);
3) case H: “open” medels with the Lie algebra given by Eq. (2.3).

¢ ) 0 o
X, =—, X,=sing— +cotgfcos¢g—,
c0 cy

~

o
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X 0 tg 0 si 0 X ¢
= cos ¢ — —cotg Bsin o — , =
3 ¢59 g qa{;, 4= o0

0 d
Y, = —cos ? 56 +(coth 6 sin (p—l)%,

d G
Y, =sing % +(coth 0 cos ¢) G

3, . 5 5
Y; = cos ¢£ —(coth 6 sin ¢+1)é;’ Y, :8-;’
7 ¢ il 7 0 7 ¢ 7 é
VY TTe Ty T T

The generators are denoted by the symbols X; (case S), Z; (case F) and ¥, (case H):

For the three metrics, the fourth generator (X,, Y, or Z,) generates spatial translations
parallel to the axis of symmetry. The three other generators of isometry are acting transi-
tively, in each case, on the two-dimensional subspaces of constant curvature which are locally
either the closed sphere, or the plane or the pseudosphere. For X = Y in Eq. (2.4),
the three metrics reduce to the known closed, flat and open Friedmann metrics, re-
spectively.

In order to obtain the most general form of the torsion tensor Qijk (or any other
object antisymmetric in the two lower indices) we have to equate to zero the Lie derivative
of this quantity with respect to any of the four Killing vector fields in each case. This
may be done in a similar way as in Appendix I of the preceding part (Kuchowicz 1975c¢).
As it turns incidentally, that the first three generators X; are the same now as in the paper
above where they applied to the study of spherical symmetry, all the previous information
concerning the number of the independent non-vanishing components of Qijk is valid
for our case of axial symmetry in a “closed” universe. In addition, these components
have to be independent of r (this results from the occurrence of the fourth Killing vector).

In the cases F and H we have to write the set of equations from the beginning. We
give below only the set corresponding to case F

- Qizkég + Qi3k5§ + Qiz;&f - Qiajéi - szké? + Q3jk5i2 =0,

ox oy oz '

The set for the case H is much longer. But the final result of the study of all three cases
is the same: There may exist no more than 8 independent non-vanishing components
of the torsion tensor, and these are given by Eq. (2.5). When we treat them as components

with respect to the 1-forms (and not to coordinates!), they have all to be functions of the
cosmic time r only.
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APPENDIX 1II
The connection 1-forms o',

Below we express the connection 1-forms for the case S with respect to the basis
1-forms 6%
o', = —w*, = CH*—1 BH?,

1 BO*+CO°,

o'y = -

tg 6
8T 93 _(F+4 HYOY,

0’ = —w*, = (D+1B)0* —
X

(,014 = (041 = (A+ '—) 91—G04,
X

Y
0’ = o, = <E+ 7) 6*>—1 HO?,

~
I

Y
0’y = 0, = L HO* + <E+ ?> 03.

Formulae for the case H differ from the set above by replacing cotg 6 in the expression
for w?; by coth 8. In the formulae for case F the term cotg 6/Y0? is absent, and this is

the only difference for that case.
The set for case S may be obtained in a straightforward way from the corresponding
set for spherical symmetry (as given in Appendix II of the previous part of this paper).

APPENDIX III
The curvature 2-forms Qij

The only difference between the expressions for the three cases under study appears
in the formula for Q2; where we have
+1 for case S
£ = 0 for case F
—1 for case H.
We list the formulae:

Q! Q? XY +A4 Y +EX +AE+ B’ + BD N
= — =| — — — — — _ A
2 ' lxvy Y X 4 2

+ X AH+BC+CD o' A 6°
2x 2 T2 A

Y BF BH s 4
+ (G—C)?+7+T—C+EG 0° A0
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D ¢
+ [-% <B+B?> +CF+1CH-} GH—I 0* A 6%,

o, = —-Q% = HX+AH BC cD |6 A 02
3= Tl x T2 T2 A

2

Y X B> BD]., .,
+A—+E y TAE+ S+ 00 A 0

[
[aeny)sersscnsenl o
|

BF BH . N 4
(G- C)—+““-" T—C-f-EG 8°> A 07,

Q= -2 = - i31+D )—‘(+§+D 0' A 0*
? 2 2 X 2

2 Y ) e B g e a e
Y2 Y\Y 4 PN RO

4 X X 1 1 4 Y ' 2 3
L= = |2 +A4Z 440" A 0*+ | B~ +BE-CH |0* A 0°,
X X Y

2 4 X 1 1 1 2
Q% = @ = | C L +AC+IBD+ BH |0 A 0

1B v_x +DY | AB+1 BE+DE |6' A 6°
- - — - = J A
Y X Yy °

vy v : 2]z g
+ —;-E?+CG—E+%FH+%H 6> A0

Y .
+ [(F+H)? —3BG+EF+1EH+1 H] 0° A 0%

X v\, Y , o
0, =0 =|1B(= - —~)-D= +14B-3BE-DE|0' A 0
X Y Y

- X 1 3
+ C} +AC+1BD+1BH 0 A0
v N -
- (F+H)§—7}BG+EF+%EH+%H 0° A8

Y Y I 2 3 4
+| -y ~Ey +CG-E+3FH+1H" |0 N
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