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METRIC TENSORS, LAGRANGIAN FORMALISM AND ABELIAN
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All metrics on the Poincaré group which are forminvariant under transformations
of the relativistic symmetry as well as spatial rotations of a basis attached to the particle
are found. The lagrangian formelism for classical fields on P is developed and applied to
the abelian gauge field. It is shown that in a particular choice of metric the gauge field
has a neutral, massive and 1~ component in addition to the usual electromagnetic field.

1. Introduction

Experimental investigations in elementary particle physics imply that the majority
of particles have a very complicated internal structure, e. g. elementary particles seem to
be spatially extended.

This fact suggests that when constructing a theory of elementary particles as funda-
mental objects we ought to consider some objects more complicated than material points
with some quantum numbers or, in other words, to consider more general fields than the
fields on the Minkowski space with some spin and isospin indices, say. Examples of these
more realistic fields are nonlocal fields (see e. g. [1]) and fields on manifolds larger than
the Minkowski space ([2-9], [13] and recently discussed string models) {we restrict our-
selves to linear models).

We are concerned about theories on manifolds larger than the Minkowski space.
Their peculiar feature is a simple mathematical picture of the internal structure of elemen-
tary particles. These models were discussed in papers [2-9] but in a rather arbitrary and
uncomplete way. Our aim is at investigating thoroughly one of such descriptions ([2]) of
the internal structure on the level of classical fields and subsequently of quantum fields.
In this way we hope to put these models into a correct field theory with a clear physical
interpretation and to make their very interesting results reliable.

Now we repeat briefly the main assumptions of the model ([2]) and present some
ideas connected with it.
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We assume that the position of a particle in configuration space is given by four-
vector {x"} referring to the standard Minkowski space M and the orientation of a four
dimensional, orhonormal basis {e;}. For simplicity, the time is included into configura-
tion space. The orientation of the basis {¢;} can be given by pointing out the Poincaré
transformation which takes an orthonormal basis connected with an observer O into {e,}.
Therefore, the configuration space of a particle can be identified with the manifold on
the Poincaré group P. Its elements will be denoted by p, or g: p = (x*, A), x"eM,
A e SL(2, C). As usual in a relativistic field theory, instead of the proper orthochronic
Lorentz group L', we will use its universal covering group SL(2, C).

The improper Lorentz transformations will be taken into account separately.

In such description the time depending wave functions of the particle (or adequate
classical fields) will be functions (in general multicomponent) on the Poincaré¢ group P.

If the basis connected with the observer O’ goes into the basis connected with the
observer O under the Poincaré transformation g, = (a, A,), then the basis attached to
O’ goes into the basis {e¢,} under the transformation p’ = g, p.

Therefore the transformations of the relativistic symmetry are the left group transla-
tions on the Poincaré group. The wave functions can be transformed by v.(p') = So
(Ao, p) ws( p). Thus, for scalar functions on P we have y'(p') = v(p), so ¢v'(p = w(g; 'p))
and we obtain an operation of the left regular representation of P. Our next problem is to
find equations of motionf or fields on P. The procedure for writing down an equation of
motion is based on the following observation: proceeding analogically as in Sec. 2 we can
introduce the metric tensors on group E(3) of motions of the three dimensional Euclidean
space. By the lagrangian formalism, constructed analogically as in Sec. 3, we get physical
equations of motion, namely the quantum equations for the rigid body in the nonrelativistic
or relativistic ([10]) case, depending on the way in which one includes the time. We expect
that this procedure, when applied to the group of motions of the Minkowski space, i. e.
the Poincaré group, will also yield some physical equations of motion. Other possibilities
for equations of motion for fields on P are given in papers [2, 3, 13].

In general, a particle with internal structure has an internal angular momentum des-
cribed in the chosen model by differential operators with respect to the variables referring
to SL (2, €), and also an angular momentum (spin) described by discrete indices referring to
(ji,j») representation of SL(2, C) group. Papers [2, 3] try to identify the ordinary spin
with the internal angular momentum and to consider only scalar functions on P. Our
opinion is that multicomponent functions on P are unavoidable, but we will not discuss
this point here.

It is quite probable that the states with a definite value of the internal angular momen-
tum can be identified with some elementary particles or resonances ([2, 3, 5]). This would
open the possibility of a theory on P in which the spin would be not only a kinematical
feature of a particle but also could play so important dynamical role as momenta.

As it is shown in papers [7], scalar functions on P satisfying eigenvalue equations of
the Casimir operators of the group P

Py = myp, W2y = —m2s(s+ 1)y,
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where W2 = W, W*", W, is Pauli-Lubariski operator, can be obtained from usual, transfor-
ming under (s, 0) representation of SL(2, C), 2s+1 component field on the Minkowski
space @,(x) ([11]) by smearing it with some test functions f*(p, x)

w(p) = ; [ d*xfX(p, x)®,(x), xeM, peP.

The test functions f*(p, x) must obey some conditions given in papers [7]. Hence, our
approach has a connection with some attempts to describe internal structure of particles
by nonlocal fields on the Minkowski space.

Some other very interesting features of field theories on manifolds larger than the
Minkowski space are pointed out in papers [6, 8, 13].

The aim of this paper is to show that theories on P can be handled by the lagrangian
formalism, to find some physical lagrangians for classical fields on P, and to call the atten-
tion to interesting properties of the abelian gauge field on P. The results we have obtained
are listed below. ,

In Section 2 we find a general form of metrics on P which are forminvariant under
the transformations of relativistic symmetry as well as rotations around the time axis of
the basis attached to the particle. Only some of these metrics have a definite sign of their
parts referring to the internal degrees of freedom. We show that on P a metric forminvar-
iant under both left and right group translations does not exist.

In Section 3 the usual lagrangian formalism is extended to the classical fields on P.
In particular the presence of the Killing vectors of the left regular representation of P
makes possible to derive global conservation laws, despite of the curvature of the manifold
P. For a very special choice of metric we obtain, as the Lagrange-Euler equation, the
equation considered in papers [3, 9] and show that the energy is not definite. This means
that the equation is an unphysical one unless one assumes an additional condition. Another
possibility is to take a better metric. The whole formalism is independent of a particular
choice of coordinates on the manifold of the internal variables,

In Section 4 we apply the developed lagrangian formalism to the abelian gauge field
on P and show that this field has two components: Usual electromagnetic field and a neu-
tral field of spin I, parity minus and mass different from zero.

2. Forminvariant metrics on the Poincaré group

We will find here forminvariant metric tensors on P. Forminvariance of metrics
under the transformations of relativistic symmetry will assure identical form of the equa-
tions of motion for fields (and consequently identity of sets of their solutions) in all
reference frames related by a Poincaré transformation.

Elements of P are p = (x, A4), A € SL(2, C), x-translation. The group multiplication
in P is (xq, Ao) (x, A) = (xo+ Agx, Ao A), where Aox = L(Ay)x and L(Ag) €L, is
matrix of the Lorentz transformation corresponding to A,.

As coordinates on SL(2, C) in vicinity of the unit element we use Re @, Im o, or
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equivalently @, o*{(w* is complex conjugate of w), where o is defined by the following
relation:

A =0%"+oc = z w"s*, " — Pauli matrices. (D
=0
Sincedet 4 = 1. 02 —m? = w,o" = 1. Let A, = t%°-+ ve. Coordinates o’ of the product
I 0
A = A5 A are
o = %0—w’t—ivx o,

Qr

@ = %% —ro. (2)

As the coordinates on P we will use (p') = (x*, 0, w*), [ = 1,2, ..., 10.

A general metric form on P looks as follows: ds2 = G,x dp'* dp®, where matric G,
must be hermitian to assure that ds? is a real number. This metric form will be formin-
variant under translations of the type p — (a, ¢°)p only when G,(p) = G,x{@, ©*). Then
ds? takes the form

ds* = gl o, 0*)dx"dx* + g (o, 0*)dx"dw’ + gl dx"dw'™

+ gl *dx dw™ + gl *dx"dow' + g dw'dw*

+ gD do*do* + g dw tdw** + g\ do'do™*, (3)
where u,v =0,1,2,3, i,k = 1,2, 3,
gt =gh%, gl =g g =gl g =it (4)

Because SL(2, C) acts on the variables w, ©* transitively, we can calculate functions
2o, 0*) assuming their values in only one single point (we will take o = o* = 0)
and applying the transformation law for a covariant tensor. Conditions (4) will be satisfied
on whole SL(2, C) if they are satisfied in one point ® = @* = 0. In this way we get the fol-
lowing formulae:

g, 0*) = gL 0L, (0, 0*)L Ao, o),
g (o, 0*) = g2(0)L 4o, o*) (0, v*),

g = g OLRT, gl = & om.

33 3 E i) EY (73
54:1 3("" ) = g:r;},(o)}fi ’lhk~ gl 07) = g O ’lhx 3
where
Lo, 0*) = 3 Tr[a®A7'6"(47) 7]
and
a . O o' ,
N = w%%— — o7~ LBt
w

are the reciprocal Killing vectors (see e. g. [15]) for the right group translations on SL(2, C)
in parametrization (1). The matrices of the constants 2'7(0) satisfy conditions (4). Hence,
a general forminvariant metric on P has 55 arbitrary, real parameters.
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Now we assume that metrics (3) have an additional forminvariance under spatial
rotations of the basis attached to the particle. This assumption corresponds to the spherical
symmetry of the particle. It is easy to check that such rotations are described by right
group translations on P of the type p — p(0, u), u € SU(2).

Let A'(@") = A(w) Ay(v). After some algebra we get the following formula:

n(e)do' = s vinf(@)dw*, (N
where
0% = 5%(0°% +v7) — 207" - 2iv%, 50°
form an orthogonal, 3 x 3, matrix. For rotations v* = —p, %% = ¢ %2 -2 = | and

reciprocal to the O%; matrix is equal to the spatial part of L?,.

As transformation p — p(0, #) changes only variables w, o* (indices u, v do not
transform) the forminvariance of metric requires gf,‘v’(w,w*) to be a constant function on
the left cosets of SU(2) in SL(2, C), i. e. to be a function on SL(2, C)/SU(2). In particular

1Y is a constant function on SU(2), i. e. for v* = —wp, 0% = 10, 92— p2 = ],

L
gil(r, v¥) = gl (0).
Applying the Schur Lemma for SO{3) we obtain
g0 = a,  gA0) = bi,, g0) = gi(0) = 0. (8)
Proceeding similarly we get
2is*(0) = 80) = o, 85'0) = ¢y
8 (0) = ddys,  g5°(0) = ed,y, ®)

where a, b, d are real constants and ¢, fare complex constants. Making use of the formula
LOL°—L/L) =g, g, =, —1, =1, —1), we obtain

ds® = g, dx"dx"+c,(L,°dx") + ¢, (" do'y + ey nido'’” + cy(n*F dw'™)?
+e4dX"L 0 doy + cGdx L T do'™, (10)
where
L) =g, 00 % +g,(1-6," )0 0" +0, (0o®)+ (1 -8,%)ie,w'o* .

Last six terms are due to the internal structure of the particle. They will be negative de-
finite when ¢4 = 0, ¢, . 0, —Jf; L —2. Only these metrics will lead to lagrangians having
|C2!,
physical meaning. Constant ¢, is dimensionless, ¢, has the dimension of length and c,
and ¢; have the dimension of squared length.
Metric (10) will be forminvariant under all four dimensional rotations of the basis

attached to the particle only when ¢; = ¢; = ¢; = 0, what implies that

ds? = g, dx*dx’ + c,(nd o’y + 3 (n**do™)>. (11)
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For the right group translations of the type p — p(a, 1) = p’ we have x’ = x+ Aa and
it is easy to sec¢ that metrics (11) are not forminvariant under these transformations unles
the term g, dx"dx" is excluded. Therefore, on P a nondegencrate metric tensor formin-
variant under both left and right group translations does not exist.

Parametrizing the left group translations on SL(2,C) by @, n, (n* = 1) : A, = exp

i
(- -;)-(9no-> (for Im © = 0 a rotation around n, for Re® = 0 a boost in direction n), we

obtain the following formulae for the generators of the left regular representation of the
Poincaré group

é - - ¢
P,=i-—, M=ixxV,+M, N= —i(xOVx+x = 0) + N, (12)
cx cx
where
M= J+K, N=iK-J),

Ji= —1 o ¢ +i i ¢
-\ ‘o’ Hais® o)’
) i
K* =1’ - . —ig 0¥ - (13)
: dw™ T fw*)

It is easy to check that
[Jz, JB] == 1'818.,,‘]7, [Kx, Kﬂ] = iE,g},K?, [J’, Kﬂ] = 0.

One defines the improper Lorentz transformations P, T so as to satisfy the following
relations:

PP,P' = g"P, PMP'=M, PNP ' = -N\,
TP,T ' = g"P,, TMT '=-M, TNT '=N.
The operations defined by
Piy(x% x 0, 0%) =y’ —x, —0% —0), 1 =1, (14)
T:p(x° x, 0, 0%) - yp*(—xY x, —0F, —0), 1 =1

have these properties and can play the role of parity and time reversal operations.

1t is seen that metrics (10) would be forminvariant under the operations P and T
only when ¢, = ¢3, ¢, = 0.

Having a forminvariant metric tensor one can easily construct an invariant measure
on P. It is simply du(p) = d*xdu(o, o*) = const /G d*xd*wd?w*, G = det [G ] and,
in particular, for metrics (11), we have

dp(p) = const !0’ d*xd*od’0*

For const = —i du(p) will be real.
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3. Lagrangian formalism for fields on P

=L . K
Keeping in mind the factor /G in du(p) and making use of the formula ‘{I K}

1 JG
,r for the Christoffel symbols one can check that the variational principle

/6 ép
\
3S = 0 for the action § = [du(p) L(y;, y;,) leads to the following Euler-Lagrange
equations for fields yp{p):

e 0, (13)
oyl 0w
where :/ denotes the covariant derivative.
Invariance of S under an infinitesimal transformation

p—(5a%p e poplt&et, =061 x=0,1,273,

pi(p) = pip) e yip) = pip)+EyES
(@)

where £ denotes the Lie derivative in direction &L (see [15]), gives
(x)

88 =& | T, du(p) = 0,
2

where

T = = £y —E. (16)
6(2}9] I) (a) !

Four ten-vectors T? obey the differential conservation laws
TazI;I = 0

Integrating (17) with respect to d3xdu(w, ®*), and assuming that the fields are vanishing
sufficiently fast at x, w, o* — oc we get the global conservation laws

]

[‘;J Exdp(o, 0T =0 (T2 = T)).
(23
The existence of the global conservation laws regardless of a curvature of the manifold
P is the result of using the vectors. It is easy to check that for the second order tensor on P
the differential conservation laws do not imply the global ones (see [16]).
We will regard the quantities 70 as the density of energy and momentum of the field.
Similarly one can get six ten-vectors M("a,,,), («, By = (0, 1), (0, 2), ..., (1, 2) which des-
cribe the total angular momentum of the field:

M=o O ey
a a '/)i .
wh = @b (i1 @wp
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The vectors &, 4, are the Killing vectors for the group translations on P of the type
p - 0, Np.

If the lagrangian & is invariant under gauge transformation g (p) — exp (iey)p(p),
¥(p) = const, there exists the conserved current

K . o0& Y *
j o =le{ —— — ey (18)
0(1/)1 A) Ayig)

which satisfies the equation /%, = 0 and, as before for energy-momentum, we get here
the global conservation law for the total charge Q = [d°xdu(o, 0*);". '
We define the Poisson brackets for functionals of fields y{p) and canonical conjugate
oY )
momenta -——- = 1 by
o)
] . oF oG
{F, G} = d? xdp(e, oF) e

ow(x 1, 0, 0¥ ) c)n(rai,t o, b)*)

0(; OF
()zp,(x,t 0, *) b*t(x t o, 0*)

where the variational derivative is defined as usual with the only modification consisting
in the replacement {*x — d3x du(ow, »*). One can easily check that {y;, P} = £y,

(2}
{y;, M} = £ y;, where P, = [d*xdu(o, o) T, M = |d’xduo, o*) M°.
(a,f) (@.8) (a,ﬂ) («,8)
For the simple lagrangian for complex, scalar field ¢ on P
1K d a 2w
L =G 3 — V- Myy (19)
with metric G'* given by G,,G*" = 5], from which for metric (I1)
ik
. . o
gV = L@ raien, g = (O.r 02>’ * = ¢,
¥ 17
as an cquation of motion we obtain
Ap o= — My, (20)

-

¢
where Ay = (G”‘ —~% w) is the Laplace-Beltrami operator on P. Equation (20) can be
GP 3T
written in the form
8TV E (JZ+K2)w = —M?*y. 20
Equation (21) is invariant with respect to the left regular representation of P (relativistic

symmetry) as well as transformations of the type p — p(0, A) (Lorentz rotations of the
basis connected with the particle).
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Equation (21) is known from papers [3, 9]. In paper [3] this equation is introduced as
a quantum equation of motion for the free hyperspherical relativistic rotator.
Energy T,° for scalar complex field w with the lagrangian (19) is

3

o 0 0 S 4 , 4 ,
Iy = — o W = MTyFe S (JyF) (Ip) 4 (Kyp*) (Ky)
ox* 1 ox! ' 1
n=0
and does not have a definite sign.
It is easy to see that for y2 > 0 the condition

fd?xdu(w, o*) p*(M*—N?)p =0 (22)

guarantees negative sign of P,, but the presence of any additional condition always makes
a theory more complicated. The problem of indefinite energy is a consequence of indefinite
sign of the internal part of metric (11). It is clear that a theory with a more suitable choice
of metric (e. g. any of metrics (10) with negative sign of the internal part and ¢, = 0) will
not suffer from such additional complications. Therefore, we think that equation (21)
is out of the class of equations on P which may have a physical meaning.

For metric (10) with ¢, = ¢, = ¢, = 0, ¢3 < 0 the equation 4y = — M?yp takes
the form

guvauav"/)"'y’z(Ml%'*'Nl%)w = —MZ% V,Z >0,

where

My = i+ Kz, Ny = i(Kg—J),

0 ) e 0
a _ 1 0 7 s s _ « __ 1 O s sk
Jr = 3 <U) 0 (€15, 2ot Ky = —4%low P + 81,0 e

are generators of the Lorentz subgroup of the right regular representation of P. The field
described by this equation has 7,° with a definite sign.

4. Abelian gauge jicld on P

Now we will consider a gauge field on P for the-gauge group U(1). General proper-
ties of this field do not depend on the form of equations of motion for sources of gauge
field. However, for simplicity and in view of some interesting properties we consider here
only the gauge field generated by sources described by equation (21).

In this section we use variables yo with the dimension of length, i.e. ( "M = (" yo,
y*). We shall denote the new variables by the same symbol o as before. In these variables
w2 —? = y?, Wk = s 4 —(%g)i, du(p) = —iy*d*x|w°|?d*wd*w* and J, K are di-

mensionless.
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The lagrangian (19) will be invariant with respect to the gauge transformation
w(p) - exp (ie y (p) w(p) (x(p) — real function on P) if

-~ ~ ~

0 d oA a d b 4o,
—_— — e Y - [ y e - — e )
f}p[ Y ﬁpl L4 4 Op’ Y ap[ Y 1Y

A

. ¢ . .
and under gauge transformation 4; - 4,+ —— x. Field {4;] is a ten-component, covar-
Py

iant vector field on P. 4, isreal, A5, = A¥.., i =12, 3. Instead of 4, we shall use the
following fields

A, = A, p=1I-1, I=1,2,34
Zaz = ‘:;A4+i9 Za* = _éL*A7+i = _st Z* = (Zaz*)’ (23)

- . ; 1 i
where vectors ¢, with nonvanishing components &, = — (0% +ig;,, ") are the contr-
Y

avariant Killing vectors of the left regular representation of SL(2, C) group in parametri-
zation (1). After some algebra we see that 4, transforms as a four vector, Z as a complex
vector belonging to the (1, 0) representation of SL(2, C) and Z, as a vector belonging to
the (0, 1) representation of SL(2, C). This can be deduced also from formula (7). Hence,
the splitting of 4, to A,, Z, Z, is the Lorentz invariant. Gauge transformations for Z,

2 2
Zioare Z—> Z— —Jy, Zy > Zi— — Ky (K, = K).
7 7
The Lagrange-Euler equations for complex scalar field ¢(p) acquire now the follow-

ing form:

. o 4 (  iye \?
(0,—ied,) (0" —ieA )y;+;2~ J+7Z P

4 iye 2 ,
—}-7—2 K+—2-Z$ p = —M?p. (24)
The conserved current is
i [ * a a 2 v
Jr= e\ WSk VTV g R VT | F 2 Akyyt (25)

or, when passing to projections on Killing vectors (as in (23)),

-~

. , é d
Ju= —w(w* e VTV w*) +2e* A, pyp*,

. 2ie . 5
Jo = . (p*J 9 —wJ w*)+2e"Z,py*,

2ie
ja* = 7 (W*Kc:*w'— wKa*w*)'*—zeZZas*ww*' (26)
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Current j, is identical with the current for usual scalar field described by the Klein-Gordon
equation.
For the free field 4; we postulate a gauge invariant lagrangian of the form

, IK
Lo =i‘F1KF 5

where
N ¢ J
}‘”( = EE AK_ a{ﬂ,. (27)
’ o
The Euler-Lagrange equations for 4, are F;‘;K = —j;,, where j, = — aql is given by (25).
From this we get the following equations for fields 4, and Z:
o . 2 ¢ 4 2. .
(3) 5“‘, F“ - ; é;ﬁ (Jaza'*'Ka*Zz*)_ ;2 (J Au+K Au) = ~Jw
b) 4 6Z+2J a,A* 2JZ 2KZ
( o ax, 2ty T\ e

4 2 4 4 .
+ 5 (U +K)Z,— 5 e Zy+ — Z, = j, (28)
H Y 7

The equation for Z,, can be obtained from (b) by complex conjugation.

By usual methods ([14]) we can get the gauge independent density of energy and mo-
mentum. We find that the density of energy does not have a definite sign. This is a direct
consequence of a non-definiteness of the adopted metric (11). A better choice of a metric
will remove this unpleasant feature.

Equation of free motion (21) is forminvariant under the Lorentz rotations of the
basis attached to the particle. It is a generalization of invariance of the theory of spherically
symmetrical top under rotations of a basis attached to it.

Now we postulate that also the equation (24) is invariant under Lorentz rotations of
the basis attached to the particle. (*)

Analogous assumption for a usual nonrelativistic rigid body would mean that the
minimal interaction does not destroy the spherical symmetry of the internal world of
the top.

In view of the fact that these Lorentz rotations are represented by a subgroup of the
right group translations on P (transformations of the type p — p(0, A)), and the right
regular representation commutes with the left one, equation (24) will manifest this addi-
tional invariance only when 4,, Z and Z, do not depend on the variables @, w*. This
condition will not be in contradiction with the gauge invariance only when we restrict
gauge transformations to transformations changing 4,, Z,, Z,, by functions depending
only on x"’s. Hereafter we have the following conditions:

J (X, 0, 0F) = @ (x") for all v, o*.
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One can easily check that these conditions imply ¢, (x") = 0 and y = y(x*). It means that’
field A,(x”) can be shifted by J,x(x?) as the usual electromagnetic field, and fields Z, Z,
cannot be gauged at all (assumption (*) partially breaks the gauge symmetry).

We choose the action §, for free fields A,(x%, Z(x%), Z,.(x% in the form

S0:

x| F etz e Lz Oy
a x|y By 2 (“'\'“ a a\_ x ~opn Tag ~ Ak
Y i - L

2
RS (Z,Z,+ Za,,;Za*)] . (29)

It can be obtained from the action 1 | du(p) FixF'™ by omitting the infinite factor
i
74
has the same form as before (24), but now JZ = KZ. = 0. One can check that quantity
fd* xdu(o, 0*)p*(M?— N?)y is conserved, so the minimal interaction with gauge fields,
depending only on (x%), does not lead out of the space of fields which obey condition (22).
The equations of motion for gauge fields are now the following:

j w® ~? Pod*w*. The action for y(p) does not change. Equation of motion for

é 0 4 *
(@ - oA Z,+ 3 Z,= — ‘ di(er, o*)j,,
oxt ox, Y J
¢ 0 4 .
(b) (_3-.;’: (;ﬂ Zaz*+ :);—2— Za* = - d,ll((!), o )ja*:
a AV v
© —— "=~ |du(o, o")j" (30)
Ox J
Decomposing Z to real and imaginary parts Z = —e+if, Z, =&+ pi, we get
J & 4 e e?
—— =ttt &= — - | du(w, o*) [y*Ny—pNy*]— — & | du(o, o*)ypy*,
Ox, ox'! Y Y ¥
o 0 4 e s e? -
T s bt 8= — - | duo, o) [y*My—yMy*|— = B | du(o, o*)ypyp*.
ox, 0x y Y y

These equations will be invariant with respect to spatial reflection P if under P
e(x,t)—» —&(—x, 1), f(x,t) > B(—x,t). These transformation laws are the same as for
electric and magnetic fields, respectively. From this analogy we conclude that Z has
parity —"".

Field Z is neutral because its lagrangian is not invariant under the gauge transforma-

4

tions of the first kind. Z has nonzero mass m? = — . In order to have this mass real
L

we must put % > 0.
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The part of lagrangian describing the interaction of this field with scalar field »

. " [&
differs from the kinetic energy of the “‘rotational motion” for v by factor -——. Hence,
m

if m is large, Z-field has a short range and interacts weakly with  (i. e. kinetic energy
— (J?+ K?) dominates). The interaction of v with A4, is m times smaller than the inter-
72

action of y with Z. This does not mean that for large m the usual electromagnetic inter-
action is negligible, because it dominates the interaction with Z on large distances and
refers to different degrees of freedom.

Equation (24) does not conserve parity only if 32 is complex. Z has then the complex
mass, but the energy of Z-field will be real as before. This follows from the fact that the
part of the metric form (10) referring to the internal motion is real also for complex ¢,
(¢; = y?). The possible interpretation would be that in this case Z describes an unstable
particle.

5. Concluding remarks

The work on the subject can be continued in the following directions:

1) The developed formalism allows us to make an attempt to quantize classical fields
on P within the usual canonical approach. After this one can consider models of inter-
actions. We think that it will be very interesting to look for other consequences of existence
of a new dynamical variable, i. e. the internal angular momentum. Some general conse-
quences were already pointed out in papers [2, 12].

2) Paper [5] gives some examples of mechanical objects whose configuration space
is P. One can try to carry out quantization for such objects and to check if we obtain as
a wave equation an equation of type (20) with metric (10).

3) It would be very interesting to investigate thoroughly a spatial extension of objects
described by equations on P. For example, the problem arises whether constants in the
metric are in any way connected with the spatial dimensions of the object. In any case
in papers [4, 7] it is pointed out that objects described by equations on a manifold larger
than the Minkowski space show a spatial extension.

The author is very grateful 1o Doc. dr J. Olszewski and Dr A. Burzynski for many
enlightening discussions and for the critical reading of the manuscript, and to J. M. Rayski
Jr. for the critical reading of the manuscript.
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