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Using the uncorrelated cluster emission as a model for non-diffractive processes, the
diffractive production is estimated. Multiplicity and leading particle distributions in diffraction
dissociation are discussed. The cross-section for diffractive production is calculated and
appears consistent with the data.

1. Introduction

In a recent paper [1] the relation between the diffractive and non-diffractive processes
was discussed. It was suggested that, using the unitarity condition, the diffractive produc-
tion can be calculated from amplitudes of non-diffractive production. Assuming the
uncorrelated jet model for the production of particles in non-diffractive processes, the
explicit formula for amplitudes of diffractive production was found.

In the present paper we continue this study of diffractive dissociation in models of
uncorrelated production. Taking into account the results of Ref. [2], we assume that the
non-diffractive production is described by a hadronic cluster bremsstrahlung model [3, 4].
As shown in Ref. [3] and [4] this model describes very reasonably the data and, conse-
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quently, seems a good first approximation to reality. Using the formulae of Ref. [1] and
[2], we calculated the high-energy limit of diffractive cross-sections and distributions.

The most important result is that the cross-section for diffractive dissociation calcu-
lated in the model is of the order of the elastic one and thus comparable to that observed
experimentally. This is important because it suggests that the mechanism considered may
be indeed of importance in reality.

Out second result concerns the scaling properties of the diffractively excited mass
spectrum. We found that, within the approximations of the model, the spectrum scales
in the high-energy limit. This is independent of the specific parameters of the model,
in particular of the coupling constants and of the average value of transverse momentum,

We discussed also the multiplicity distribution of diffraction dissociation and we
found that the cross-section for diffractive production of N clusters can be approximated
by the formula

1

Oy = 0 —— ,
N 14 BywN

(t.1)

where By is a constant depending on the shape of the transverse momentum distribution,
4 < By < 1. Furthermore,

w = A.{¢ o, (1.2)

where A, is the slope of the elastic cross-section, (qi) is the average value of the trans-
verse momentum squared and o is given by Eq. (4.10).

The result (1.1) is in marked difference with the predictions of the short-range correla-
tion models which predict oy approximately independent of N [5, 6].

Finally, for the multiplicity distribution at fixed value of

E= . H?s (1.3)

where .# is the diffractively excited missing mass, we improved the result of Ref. [I] and
obtained

doy caN In(.4 2! (L.4)
dé &1+ BywN) | In (sii?) '

where p is defined by Eq. (A.8).

The paper is organized as follows. In Section 2 we describe the uncorrelated cluster
emission model used for non-diffractive processes. In Section 3 the diffractive amplitudes
(as derived in Ref. [1]) are given. The diffractive multiplicity distribution is discussed in
Section 4 and the leading particle spectrum in Section 5. The results and conclusions are
summarized in the last Section. Appendix A is devoted to a presentation of the calculation
of the generalized overlap function using the method of de Groot [7]. In Appendix B
the formula for diffractive amplitudes is analyzed.
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2. Non-diffractive collisions in the Uncorrelated Cluster Emission model
The non-diffractive amplitude is written in the form [1]
Tap = 10.8:0(Pyn— Py), (2.1)

where

a3k
Sp = exp {i J“E' (o(kya™ (k) + 0*(16)0(1\'))} (2.2)

describes the emission and absorption of clusters, and

d*ky &k, dPky Pk, . ;
W= s B, B, R R bY(K Kai ke k) (23)

describes the scattering of leading particles. Here a*(k) is the creation operator of the
cluster and o(k) is the probability amplitude for its creation. b* (k) is the creation operator
of a leading particle and ¥(k,, k;: k,, k4) is the corresponding scattering amplitude.

The cluster creation probability amplitude p(A) is approximately independent of
the longitudinal momenta (to guarantee scaling of the inclusive spectrum). To fix the
normalization we introduce the parameter 4 defined by the formula

A= ja’ijr'u_)((lﬁ);z. (2.4)
In the following it is convenient to introduce the function f{g,) defined by
lo(g )I* = Af(q.);  [d’q, fig)=1. (2.5)

The matrix elements of the operator (2.1) are given by
G5 s Gns kes Kpl Tap!k 4 Kg)

= lN’J(‘Il) e 0GP (R s ke kg, kp) [A/:‘i]_l’ (2:6)

where
injfi = [d’q, In(u,e)f(g)) (2.7)

and A is the cut-off parameter'. Following the suggestions of Ref. [2] we take A4 = total
energy of the system.
The cross-section for non-diffractive production of N particles is

42 1 s

dU.\v =
Mk, N!

, ke &’ky dPq; dqy
Ec E, E, =~ Ey

K(IU <o dns kC’ kaTNDEkAJ kB>' (28)

t 9 is the Euler constant equal 0.5772,
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To obtain an approximately independent emission of clusters, the leading particle
scattering amplitude Pk 4. k¢; kg, kp) should be of the form

Pk g ks Ky kp) = VESWESETES Uky ke s ks kpo), (2.9)

where E®) =E + py. Indeed, after integration over the longitudinal momenta of the leading
particles C and D we obtain
4_[2 E( + )E( -}
oy = o DA Sk Ak gy e ay )Pk, dPhp,
Mk, N!

3 i3

f{’((h)f: Eﬂ’(q}\)!z f{‘q“, fl"q) kg s ke s kB‘ kp, )*2 (2.10)

E, E, o hCis R Rp

and we see that there are no rapidity correlations between clusters. There remain, however,

the correlations between transverse momenta. These are of long-range character and imply

that the Pomeranchuk singularity calculated in our model is a cut rather than a pole.
This feature of the model has several phenomenological consequences [1].
The leading particle spectrum obtained from the formula (2.8) is [4]

g™ , ,
(jf = 1N oy (2.11)
ux
where

! (ND

d )
o™ | T (2.12)

dx

is the non-diffractive cross-section.
Thus, to represent approximately the experimentally observed flat spectrum, it is
necessary to take [3, 4]

A=l (2.13)

3. Diffractive amplitudes

It was shown in Ref. [1] that the amplitude for diffractive production of N clusters
is given by the formula

Gis> o5 Gns ke kp 1ALk ys kgy = lN@(‘h) .. o(gp)Fy{®}, 3.1
where
N
Fy{@} = ) (=1)" ) dlkg+kp—q,,,,— . —dqu)- (3.2)
n=0Q

= (N)
n Jeombinations
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and ¢(R) is the generalized overlap function:

d /\1 d ks
D(R; kg, kes kg, kp) =} Wk, kes ko, k)
E, E
X Wk o Ky Ko K2) E m,f | | S 00) R0, ~ o =0,k =K. (33)

m=0

This generalized overlap function can be estimated in the high-energy limit using
methods developed by de Groot [7]. Such an estimate is presented in Appendix A. Assuming
a Gaussian cut-off on the momenta of the nucleons, the result is

/E*’E‘ ’ {_(kc +kp )Aa)

(D(R: kAs I‘C5 kBa I‘I)) = //cI(O) E( F)E( ) T

e J
cexpl - [ R = Ferthor /o (3.4)
P 1 L B / 1( .

where ./ (0) is the forward elastic amplitude, and
) - 2 § 4
QF = 245"+ 244> [ln <_2> =2y A+ I)i| , (3.5)
. i

where (z) is the digamma function.
Using formula (3.4) it can be shown [l] that the leading contribution to Fy{®} is

given by
Fyld) = @R = k+ky: kg kes Ky, kp)

2 \Ni2 - . R R
* (éz) z (qm_‘ Yy, ) (qllh‘—ll_ ’ lll';vL)’ (36)
H

where the summation extends over all possible pairs of clusters, each of the (N—D!!
combinations taken only once. Note that formula (3.6) makes sense only for even N.
The contributions for odd N are zero in the leading order. Thus this model predicts that
the diffractively produced clusters must occur in pairs.

Eq. (3.6) implies that the differential cross-section for diffractive production of N
clusters is given by the formula

4r? , L2y
dow = i PR = oty ko ks K k)l (0 )

XZ(Gys r )0 kgt kg—he—kp—g,— .. ~qy)

N
Pe &Pk d%q;
x e % p 4 (3.7)
"E. E, E,

i=




Z(Gys s 40) = 10 Gy D) e Gyt Gy IV

= Z (Eimj_ ) Z;I‘ZL) (5llzw—1,L ’ allzNL)' (38)

Here again the second sum extends over all combinations of the pairs of particles (each
particle occurring twice).

4. Multiplicity distribution of diffraction dissociation

Using Eq. (3.7) we arrive at the following formula for the asymptotic value of the
cross-section for diffractive production of N clusters:
Ag0, 1 fdskc d*k, d’q, d3qN< 2 )”

Oy = —— —

2 N!

EC ED El EN

ot
x 0 P—kc—kp—q— ... —gy)exp [ (k& +kp, )Aal2]
x ECVESf(qy) - fan)Z(qy. .., an)- 4.1

As already mentioned, this formula is valid for even N. For odd N the diffractive
cross-section vanishes in the high-energy limit.
To estimate gy we use again the method of de Groot, writing
On = On)| " Onys 4.2)

where

A0

el“el

J‘dycdyDE(cﬂEg)_)dh dyNé(Z)(P_kC_kD_QI_ o —qn) 4.3)

Ony =

e

and

1 24\" 2 2 2 2 <(2)

Oy, = Nila? d°ke dkp doqy | ...dqy 0 ke, +hkp gy + ... +qy,)
: 1

xexp [ —(k¢, +kp,)Aul21f(qy) .- anZ(a,, ..., ay)- 4.4

oy can be calculated either directly, or by de Groot’s expansion. The result is

e = Aelael dN eXp [Z log (S/EZ)] (4 5)
R Ul BV ECEN )y S | P ‘
For N fixed and s — oo this gives
A0, P
oy = —— [in (s/u*]". (4.6)

TE
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To calculate oy, we replace the transverse 5™ function by its Fourier representation and
perform the integration over the transverse momenta of the nucleons. The result is

Oy, = (2 NA’2 ‘dzbZ (bye ¥ Aa
Nt — N! Q% el N »

where

N -
Zyb) = [ Z(qy, .., an) TT [fge™ %2d?q; ) ].
i=1

(4.7)

(4.8)

Zx(b) is the sum of [(N— D!} terms corresponding to different products Z/u '5,,,71. In

Appendix B we show that Zy(b) can be approximated by

, @i\
26) = N (“2) exp (b,
where
o= {g*>
2{q%>*

and fy is a constant satisfying the condition
iSphyv<i.

Substituting Eq. (4.9) into (4.7) we obtain

o (KDY
oy, = — 3 .
Ag\ L+ fywN

Thus we have finally in the high-energy limit

o — g |GG 1L e
N el Qfll 1+ﬁNW'N 1+ﬂNWN

for N even, and zero for N odd.

5. Leading particle spectrum in diffraction dissociation

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

To obtain the leading particle spectrum we have to integrate the differential cross-
-section for diffractive production (given by Eq. (4.1)) over the cluster momenta and the

momentum of one of the leading particles. Using Eq. (2.8) we obtain

N
dO'N _ AelO'el e-kCLZAel/Z _}_ 2_)- e_kDJ-zACI/Z
dxcd’k 2n N\ @3

N
_ d’k d*g,
X E57Z(dy, - qu)0*(P—ke—kp=q1— ... —qy) —— | | [f(q.—) E] G.D

Ep

i=1
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and it is clear that the estimates of doy/dv and inclusive cross-section

do day 5.2)
= e .2
dx dx (
N
can be performed quite similarly to those presented in Section 4. We will thus not repeat
these calculations but only quote the results.

The inclusive leading particle spectrum is

do Gt el ! 5.3)
dxed?he, o (I—=xo)In(1—x¢) (53
The multiplicity distribution integrated over the transverse momenta is
do o, In(.#% 1"t N 1
AR 5 [ ( /!;J e (5.4)
dxc  In(s/p®)l In(s/u”) T+ whyN 1—xc
The average multiplicity for given & = .#%s = 1—x,
. In (s/u?) ,
n(g,s) = — - : (5.5)
Iné

6. Discussion and comments

The results described in the previous sections show that the Uncorrelated Cluster
Emission model remains an attractive possibility for the description of not only non-
-diffractive, but also diffractive processes. Two points seem to us of particular importance.

A. The magnitude of the diffractive cross-section comes out rather close to the
experimental value. We find this result non-trivial, particularly in view of the results of
Ref. [2], where it was shown that in the uncorrelated pion production model (without
clusters and with the cut-off parameter defined as in Ref. [1]) the diffractive cross-section
is too large by more than one order of magnitude.

B. One obtains naturally the scaling of the diffractively excited mass spectrum. It
should be emphasized that this scaling property is not sensitive to the parameters of the
model. In particular, it does not depend on the value of the coupling constant 4.

Other results of interest are

a) The multiplicity distribution follows the rule given by Eq. (4.13) which can be
approximated by

oy = 6,4/(1+N) (6.1

at present energies. This result differs from the one obtained in Regge-pole models [5, 6].
At asymptotic energies, the behaviour of oy depends on the behaviour of w, that is, on
the shrinkage of the diffractive peak and on the transverse momentum cut-off in non-
-diffractive collisions.
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b) The shape of the leading particle spectrum in diffractive collisions is given by Eq.
(5.3), which shows two characteristic properties: (/) The missing mass distribution follows
the formula derived in Ref. {1]:

do _
— o (EINET (6.2)
dé
(i) The slope of the inclusive transverse momentum distribution of the leading particles
is predicted to be half that observed in elastic scattering. Both these properties are similar
to those expected in Regge theory [5, 6].

¢) The energy dependence of diffraction dissociation is governed by the behaviour
of the parameter

W= Aggidw = Ay -5 (6.3)
‘1;

The asymptotic behaviour of the ratio of diffractive to elastic cross-section is

Oairer Inlns
Zaifte 7

— (6.4)
O w
This formula follows from Eq. (5.3).
d) The multiplicity distribution at fixed .4 is given by (cf. Ref. {1]):
doy e In(.Z2% ) T¥"' N 6.5)
dé  Eln(s/pD| In (s/p?) 1+ pwN -

As already noted in Ref, [1], this result differs in an important way from that of Regge
models: The different energy dependence of cross-sections for different A is a reflec-
tion of the cut nature of the Pomeranchuk singularity in our model.

€) A peculiar feature of the model is that, at asymptotic energies, only an even number
of clusters can be produced diffractively. The cross-section for production of an odd
number of clusters vanishes like (In s)~1. It would be amusing if this result were con-
firmed experimentally.

We would like to close this paper with several comments.

(i) It should be realized that our calculations are only semiquantitative. It may be
worthwhile to undertake a more detailed analysis and comparison with experimental data.
This would, however, require better formulation of the cluster emission model, and
determination of cluster properties.’

(i) A particularly important feature of the model is that it provides a possibility to
calculate the absolute value of the ratio of the diffractive to the elastic cross-sections.
We would like to emphasize that this is not possible in most approaches to diffraction dis-
sociation [8].

(éii) Our results differ in several points from the standard predictions of Regge models,
{5, 6]. This is not surprizing because, as discussed already in Ref. [1], the Pomeranchuk
singularity in our model is a cut rather than a pole. It is important to keep in mind these
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differences as they may provide experimental possibilities of discrimination between the
underlying ideas. The diffractive multiplicity distribution is perhaps the best candidate
in this respect?,

(ir) 1t should be stressed that our calculation gives information on the scaling part
of the diffractively excited missing mass spectrum only. In the particular version we consider
the nonscaling part vanishes in the high-energy limit. However, it may be easily added
by introduction into the model the possibility of nucleon excitations (leading clusters [3, 4]).

To summarize, we feel that our asymptotic estimates indicate that the uncorrelated
cluster emission model may be a serious candidate for the correct description of not only
non-diffractive [3, 4] but also diffractive processes.

We would like to thank J. Benecke, P. Breitenlohner and E. de Groot for helpful
comments.

APPENDIX A
Generalized Overlap Function in the high-energy Ilimit?

We use the method developed by de Groot [7], i.e. we introduce the Laplace transform
of the § function in Eq. (3.3), and estimate the resulting integral.
The first step gives:

\/E(+)E(+)E(_)E(—) Ez =2\—A
®(R) = VE4 Ec Ep Lp ( v/ﬂ 2
2 (2n)

fd“x exp {Rx}

o0

N 37 3 3 3
N A [ dky dky k‘*’k("d v DGN v rqn ks
a7 5 kor Ko — €
N! ko kos E, Ey
N/O

XC(kAJ_’ le; kB_]_a kzi,)c*(kci’ kiyskpy, kzﬂf(‘h) . f(an)s (A.1)

where, according to suggestions of Ref. [2], we have taken A = R = \/ RS—«Rﬁ. The
integration over x is performed along the straight line parallel to the imaginary axis.
Using the identities

| dye”F¥emBixn) = 2K o(m | X),
r o x(F)
J dye” B PiOE® = 2 —— K ((m ), (A.2)
X

2 For example, formula (4.13) implies that the KNO scaling should be violated at high energies in
the region of small multiplicities [9].
3 The results presented here were obtained in collaboration with J. Benecke and E. H. de Groot.
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where

52 = ad—xd = xx)

we can rewrite Eq. (A.1) in the form

-
®(R) = 2VEESESES 5 (R (/ ))--jlzbexp (iR, —Fy | —ky, )b}

1 2
x J‘dzkl_LdszLC(kAL, ki skpg ks ){*(ke,, ki skpskay) <§;1) J.dxodx”

x Ky(my (DK, (my 3 exp [24  d*q, Ko(u, %) T15(q )] (A.3)
Since the main contributions to the integral are from the region X ~ 0, we approximate

ze’ 1
the Bessel functions as Ky{z) = —In <2> and K,(z) >~ --. Substituting these formu-
z

lae into Eq. (A.3), and applying the identity

LN NP A4
L 4 ,
2 ) 2 @ 4 (A9
we obtain
(R*/@*)™*

®(R) = VEPEDESES) o jd bexp {i(R, =k, —k, )b}

X § d?ky dhy, Ckay kg kg ks D0 ke Ky ko Ky )

R).(h) 2 )
e + ‘p(—)
* [m(bm)J HRTINRTD

I ne oo l
xexpq—24 | dg, In v-'i--‘ e "L”f(qL)j , (A.5)
where
Aby = [ e"iolg )%
The final step is to perform the integration over b using the saddle-point method. Using

Mb) ~ M1~-b*q> y/4) (A.6)

we obtain

N 72 o
j d*q, In <“;‘ )e TFolg )P =2 [ln (7/2)~ %Q b* In (#/2)},



where
gty =1’ d%q,, (A7)
@®YInp = [d*q, In(u,eq’f(q,) (A.8)
and from this the formula
1 X
d)(R) \/E(+)b(+)E( )1;4( )ﬁfa_:f)—j‘ dzklﬂLdzkz_LS(kAJJ kl_]_; kBLa kZL)
X C*(kCLs ku) kDi’ kzg_) €Xp l'—(RL "'le —kZL)ZI’QKZ}}f‘Qg’ (A.9)
where
R\2
Qf, = ).(qi) [ln (—;) —29p(A+ 1)] (A.10)
ii
follows.

Finally, let us note that this formula can be further simplified for gaussian nucleon
wave functions {. Assuming

Clkyq s ks kB_j_a ky )= (oexp [—(kAL “k1J_)2Ac1/_2] eXp ["’(kBJ_ ~k2i_)2Ae,/2] (A1)

we obtain

(+) ke, +kp 2
(I)(R) — ‘//cl(o) exp [—(kgA -+ k )Ael !4J —— exp [—' (R_ - #>'~v—'£') /Q%] >

E(+)E( ) 2
(A.12)
where
Q% = Q24+24," (A.13)
and % 4(0) is the forward elastic amplitude.
APPENDIX B
Approximate evaluation of the function Z(b) for N even
From formulae (3.8) and (4.8)
N -
Zyb) = §1Y @u  4u) - Gun_, 4V [T f(g)e™*d?g; (B.1)
i=1

where the summation extends over all the (¥ — 1)}!! ways of arranging the N clusters into N/2
pairs, and Z}m is the transverse momentum of the u-th cluster.

According to (B.1) Z,(b) is a sum of [(N—1!!1)]? terms. There is a one to one corre-
spondence between these terms and diagrams defined as follows:

a) draw N points labelled 1,2, ..., N,

b) draw N red lines and N blue lines so that every line connects two points and every
point is attached to exactly one red line and exactly one blue line. The correspondence
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between the diagrams and the contributions is made by relating each red (blue) line connect-
ing points / and j with a factor 5,- g jin F (F*). Consequently the contribution of a graph
to the integrand in (B.1) is the product of contributions corresponding to all the vertices
and all the lines. For vertex / the contribution is g7 f(g;)e~%é and for a line joining vertices i
and J:

cos 0;; = cos 0; cos 0;+sin 0; sin 0;. (B.2)
Formula (B.2) implies that a single diagram with N lines contributes 2" terms. Fortunately

choosing the 6 = 0 axis along b one sees easily that only two terms survive the integrations
over 8,, and

Zyb) = Y TI [<cos® 0g%e™ym 4 (sin? 0g2e™y"]. (B.3)

diagrams loops

Here each product extends over all the disconnected loops forming a diagram, #, denotes th=
number of vertices in the loop (thus Y n, = N) and the notation

&@> = [flde@dq (B.4)
is used.
In order to simplify (B.3), we use the identity
> Tl2=n (B.5)

diagrams loops

This is easily proved by induction. For N = 2 it holds. Assuming that it holds for all
even M < N, we prove it for N. Consider the contribution from graphs where vertex 1
is contained in an k-particle loop (k must be even according to the rules of constructing
the diagrams). It is a product of

a) the number of ways of choosing the other k —1 particles in the loop, i.e. (JZ: i),

b) the number of possible orderings of the particles in the loop, i.e. (k—1)!,

¢) the contribution of the remaining loops equal according to the inductive assump-
tion (N—k)!,

d) a factor 2 for the loop containing particle 1. The full contribution is 2(N—1)!
independent of k. Since k can take any even value from 2 to N, (B.5) follows.

Since (B.3) is not of the form (B. 5), we only calculate the lower and upper bounds

2¢" << {cos? 0(11"e‘ﬁ;‘?>"'+(sin2 que_ig‘;)"’ < 2% (B.6)
where
2 4
c_ = 1{g%") ~ I exp [—- <ql2> b2:| , (B.7)
2 g7 >
2 4
¢y = <q*sin? 0™y ~ —<ql> exp l:— <qLZZ b2:| . (B.8)
2 84q1>

Substituting into (B.3), factoring (c.)" out and using (B.5), we obtain two inequalities
implying (4.9)-(4.11).
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