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LETTERS TO THE EDITOR

P-WAVE SCATTERING LENGTH SUM RULES FOR THE =n SYSTEM

By H. ReCHENBERG*, D). ROBERTSON** AND R. WiT***
Max-Planck-Institut fiir Physik und Astrophysik, Miinchen
( Received December 10, 1975)

Sum rules for the 7 = 1 P-wave am scattering length «p are derived for the modulus
and inverse of the scattering amplitude. These non-linear dispersive sum rules depend
crucially on the positivity of the amplitudes’ imaginary part. Numerical examples are given
which seem to prefer larger values of ap. Comparison is made to the commonly used relations
for ap.

Because of its simple structure nn scattering has long been a favorite proving ground
for theoretical models of hadronic interactions. Unfortunately, experimental access to
the on-shell 7n system is shrouded by many difficulties. Nevertheless, spurred on by the
high-statistics experiments of the type nN — na/N [1-3] and the theoretical input ot analyt-
icity and crossing symmetry expressed via the Roy equations [4], the phenomenological
analysis of nx scattering has made great strides. Recently Basdevant, Froggatt and Petersen
[5] presented a comprehensive analysis of the available data (M > 600 MeV) based on
the Roy equations and found that the data are not yet sufficient to completely determine
the threshold parameters. At all points along the universal curve of Morgan and Shaw [6]
they were able to find solutions (characterized by the I == 0 S-wave scattering length in
the range —.05 < al < .60) consistent with the data and Roy’s equations. Different
solutions lead to appreciably different values of 2af —5a2, a quantity which arises
naturally in nz analysis (see, e.g., Eq. (4)). The phenomenological value of the P-wave
scattering length @} is rather stable (changing from .03 to .04) but disagrees with the
preliminary experimental data (ap ~ .07, cf. Fig. 6 Ref. [7]).

In this note we analyse some typical solutions of Ref. [5] by means of sum rules for «p
which follow from non-linear dispersion relations (e.g. dispersing in the modulus or inverse
of the amplitude) and show that solutions with larger values of ap are preferred.
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Consider the s<>u crossing symmetric 7¥7° scattering amplitude F(s, t) =

== F¥Ys, t)+F3(s, 1) and assume F(4,7) < 0. Due to the positivity of Im F(s, ¢) for s > 4
and 7 > 0 the function F(s, 1) has no zeros and the modulus representation of F(s, t) is
given by [8]

o0

arg F(s. ) Vs+t J'ds’(s'—2+ t/2) [In [F(s', O[> —In |F(4, £)?]
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Differentiating both sides with respect to ¢ and taking the limits £ —» 0 and s — 4, we
obtain
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where D =ReF(s,0) and A =1mF(s, 0). The same procedure applied to
[F(s, ) V(s—a)(s+ 0] yields

ap T ds(s—6)D T ds(s—2) D Y 1.5a}
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These sum rules are only valid when F(4, 1) < 0. However this restriction is easily circum-
vented by deriving similar relations for the s «» # symmetric function

E(s, t) » F(s, t)—F(4, 0)—¢,

where £ > 0. Varying ¢ emphasizes different energies between threshold and 600 MeV.

To illustrate their application, a numerical analysis of Eqs (2) and (3) (and their
counterparts with ¢ # 0) was performed. For energies below 1100 MeV the F'(s, f) were
calculated according to the prescription giv_én in Ref. [5]. We considered their three para-
metrizations, SAC1, SAC2 and SAC3 (with ap = .0303, .0324, .0408, respectively). We
used the phase shifts of Hyams et al. [9] between 1.1 and 1.9 GeV and a standard Regge
parametrization above 1.9 GeV. The contribution of energies above 1 GeV was small,
never more than a few per cent. The important contributions to the integrals are the
regions around threshold and the (induced) zero of Rg F(s, 0) which is below 700 MeV.
The left- and right-hand sides of the corresponding sum rules were compared for different
values of e. Significant discrepancies in the range of 10 to 709, are observed for SACI
and SAC2. For example, with ¢ = 0.1 the left- and right-hand sides of the modulus sum
rule were 0.315 and 0.24 for the SACI solution; our inverse amplitude relation yields for
SAC2 and SAC3 (.44, .31) and (.68, .83), respectively (note the change of sign for the differ-
ence between the left- and right-hand sides when passing to the SAC3 solution). Of course,
relations like (2) and (3) are a limiting case of corresponding derivative dispersion relations
evaluated at ¢ = 0 and s = 4. In order to get some feeling concerning stability of our
results we performed the principal value calculations of the relevant dispersive integrals
in the energy region between 285 and 750 MeV. In all cases a smooth transition to the
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results obtained at \/ s = 280 MeV was observed; none of the discussed Saclay solutions
gave any significant discrepancy between 350 and 750 MeV — only the threshold region
(280-330 MeV) led to differences. Therefore it is difficult to see how our threshold relations
could be significantly improved by reasonable changes of the most characteristic parameters
of the model amplitudes,without destroying either the agreement with the Roy equations
and/or the very subtle balance of the derivative dispersion relations for the inverse and the
modulus of the scattering amplitudes in the energy range between 350 MeV and 750 MeV.

The positivity of Im F(s, ¢) along the cut above threshold is essential in the derivation
of Egs (2) and (3). This property is not important for the validity of the Wanders sum
rule [10] (which can be derived from fixed r dispersion relations {11])
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where A!(s, 0) == (24%Gs, 0)4-3A4(s, 0)— 5A42(s, 0))/3. Similarly, essential for deriving [5]
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are only analyticity, s<> u crossing and the assumption of rho-dominance of the 7, = 1
amplitude at high energies. Oppositely Eq. (2) does not require any detailed assumption
about the asymptotic behaviour of F(s, 0). With at least constant total cross sections at
infinity the integrals of Eq. (3) have faster convergence properties than those of Eq. (4).
In practical applications of Eqs (1) and (2) the behavior of F(s, 0) below 1 GeV is de-
termining.

The importance of positivity is not surprising. As was recently mentioned by Piguet
Wanders [12] a simultaneous requirement of crossing, analyticity and positivity of the
absorptive parts of the partial wave amplitudes leads to constraints on the higher partial
waves in the unphysical interval 0 < s < 4. Our sum rules contain only physical quantities
which depend essentially on the S- and P-waves and therefore have a more straightforward
connection to phenomenological models.

The discussion above was limited to a particular case of the s <> 17 crossing symmetric
linear combination of the s-channel isospin amplitudes

F(s, 1) = aF°(s, 1)+ BF(s, )+ QRa+ BF(s, 1)

with o = 0 and f# = 1. By changing « and f§ one varies the relative strength of the three

isospin amplitudes. With & = 1 and = O one can derive in similar fashion all the con-

straints presented in Refs [13] and [14] without invoking total s<> f «» 1 crossing symmetry.

With our choice of « and § we have replaced the (rather inconvenient) strong D-wave

dependence (through the derivative) for the n°z° case with the fairly well known P-wave.
More detailed results of our analysis will be presented elsewhere.

One of us (R.W.) would like to acknowledge useful conversations with B. Bonnier,
A. K. Common, P. Grassberger and O. Piguet.
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