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The present paper is an attempt to generalize the canonical quantization procedure
for the Dirac field to curved spaces. Thereby the metric field acts as an unquantized back-
ground field which is not influenced by the quantized Dirac field. After the investigation of
a 3-dimensional eigenvalue problem the equations of motion are derived for the field opera-
tors in the Heisenberg picture. Finally we consider special Riemannian spaces admitting
the Killing vectors.

1. Introduction

After the investigation of the electromagnetic field in an earlier paper [1] we consider
the quantization of the Dirac field with regard to the study of quantum electrodynamics
in Riemannian spaces. Thereby the Dirac field is a “test field” which is influenced by
the metric background field, but this does not act back on the latter. We do not restrict
ourselves to spaces admitting the Killing vectors. In the same way as in [1] we consider
spacelike hypersurfaces S and define 3-covariant time derivatives of the geometrical
objects (bispinors and bispintensors).

With the aid of these definitions we succeed in formulating the general relativistic
Dirac equation and the iterated Dirac equation in a fully 3-covariant form.

As in the case of the Maxwell field the expansion of the field operators in terms of
a complete orthonormal system leads to a quantum mechanical problem with a quadratic
Hamiltonian. Commutation rules are postulated and we derive equations of motion
for the field operators in the Heisenberg picture.

Finally we treat space-times which have certain symmetries (Killing vectors) in
connection with a preceding paper [2].
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2. Decomposition formalism

In this section we apply the decomposition formalism explained for tensor fields
in [4] to bispinors and bispintensors.

The starting point is the selection of the space-like hypersurfaces S which have the
time-like unit normal vector n;' (' = —1). We adapt the coordinate system to the
hypersurfaces described by x* = constant as follows:

n,=ndf, n= (—g*H~ 12, (2.1)

In the coordinate system (2.1) the metric tensor has the form

/(3)ab N"Nb Nb

& — 3~
, _ gab’ Na i h
(gu) - (Nb [-—-nz—i-NaN") ’ (g ) - Na [ l

. (3)ab
with g g = 6%

By the selection of the space-like hypersurfaces we have restricted the admissible
coordinate transformations to
v

x* = x7(x% xY, x* = x¥(@xY. (2.2

In the following all equations have to be formulated in such a way that they are invariant

under this transformation group (3-covariance). All metric operations in such equations
. (3)ab
have to be performed with the aid of g, and g , e.g.

{3)ab
1\]‘:l = g Nb‘

In order to formulate all equations in a 3-covariant manner we have to distinguish with
respect to covariant derivatives of tensors between

Vi = Vie—TikVin (2.3a)
and
Va“b = a,b—(s)rtcszc’ (23b)

where I'% and I, are to be performed with g, and g, respectively. The following
relation is valid [4]:

a (3)ya Na - 4
Fbc = rbc_ 7 Ky, Kab = nly, = % a4gab'

(3)ab
It follows that g, .= 0 and g ;. = 0.

Ya, b, e, ...=1,2,3and i, j, k, ... =1, 2,3, 4.
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3. Bispinors, Dirac matrices
3.1. Algebraic part

Regarding the bispinor formalism we adopt the corresponding treatment in [3].
The bispinor components are invariant under (2.2), but contrary to the invariants of the
tensor calculus they additionally transform as follows under equivalence transformations:

Y =5y, ¥V =¥y
where the adjoint bispinor ¥ is defined by

Y=yl p2=1. 3.1
The Dirac matrices y, (metric bispintensors) satisfy the basic anticommutator relation
{7 = 28 (3.2)

Since they transform like tensors under coordinate transformations we can take over
the following two statements from [1]:
1. Covariant spatial components of the y,-matrices transform like 3-tensors under (2.2).
2. Contravariant 4-components of the Dirac matrices, multiplied by », transform
like invariants under (2.2):

Yl

¥ =9 f=m
Under equivalence transformations the Dirac matrices transform according to the rule
’ -1
=S
Table I contains important algebraic relations for the Dirac matrices in 3-covariant
form.

We have to require the validity of the relations (3.4a, b) in order to derive the adjoint
Dirac equation with the aid of (3.1).

TABLE I
Algebraic relations for Dirac matrices
I o I
General covariant form | 3-covariant form [i Remarks
i
‘ N E)
{Var3 b} = 2ab (3.22) ¥ = g%
{viova) = 28ix Wa ¥} =0 (3.2b) A
{7} =-2 (3.2¢) pt = —1
1
Ogp = — [Yas vb] (3.3a)
2i
Oiy = ! [ 1 1
"= e % = ol 91 = 77 (3.3b) 0a = nok
o =90 3.3¢) o = plott
i 3) (3
OO B =—py G == p° (3.42)
B =—pp (3.4b)
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3.2. Analytic part

Sintce the bispinor formalism has to be generally covariant and moreover covariant
under equivalence transformations, we have to replace partial derivatives by covariant
ones:

Y=Y, +0¥, ¥,=¥,-¥I, (3.5)
with bispinor connection coefficients satisfying the transformation law
ro=¢ny'-¢,9 .
The bispinor connection coefficients transform like tensors under coordinate transforma-
tions and the two statements given in Sect. 3.1 for the y,-matrices are valid for these
coefficients too.

The covariant derivatives of the y,-matrices are determined by

Visj = Vi~ Liftm+ [T 7] = Vet [Tp %l (3.6)
and for f we have

B =0. 3.7
TABLE 1I
Analytic relations for bispinors and bispintensors
General covariant form 3-covariant form Remarks
Vg =W+, ¥ 3.5
v v la atla (3.5a) g]“a — T;a
w =t LW L = 1 W _w N W since I', is a 3-tensor
4 - ’T( 4 uzN )_‘ (3~5b) under \2'2)
Yim = Pam—Tin; 1
+r’:l¥,k m mt j 64';’“ = -; ('}fa’4_ g’a,bNb_ l{/bNb,g)_Fq]a
Yal|p = —VKab (3.62)
na ~ 3
OsYa ==~ 7+¥"Kap (3.6b)
Yik =0 @ Yallb = Vb|la
Plla = —7°Kap (3.6¢)
R Mg 3
Qay =— —° (3.6d)
n
ﬂ L= [))“a =0 (373.) a
= 2f =0 (3.7b)
Pjaljp—¥||pjla = Ga? Gy : Curvature
Piin— Vi = GV " bispintensor
2P| = @) ja = 2V Co¥ Ga = nG#

@ Comparison of (3.7a, b) with (3.6¢c, d) shows that the relation § = if/ used in Minkowski space is
not valid in general,
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In Table II important analytic relations are collected for bispinors and bispintensors.
Thereby we have generalized the invariant time derivatives given in [1]} for tensors to
bispinors and bispintensors. Comparison with the invariant derivatives given in [1]
clearly points out which terms are due to coordinate transformations and which terms are
connected with equivalence transformations.

Let us turn to the bispinor connection coefficients I',. These are determined by the
requirement y;; = 0. If we construct the y,-matrices from the constant Dirac matrices
¢y of the Minkowski space with the aid of tetrad fields A0,

Yk = }'l(cj))’(j)s Tej = ;-1((';'}))’(.”),
the bispinor connection coefficients of the Dirac field reduce to [5]:
I, = %}’j)’j.k- (3.8)
According to (2.1) we fiix the tetrad fields A\ as follows:
I =n, i@ =0
Applying the decomposition formalism to (3.8) we get

{3
ra = % ,})b A'I(f)a‘y(c)* (383)
(3)
IF'=nl* = =1 (7" 70A9-K) (3.8b)

(3)
with K = g* K.

4. Dirac equation

In the previous sections we obtained all the elements necessary to formulate physical
laws in a 3-covariant manner. Only the derivatives described by d, and || may occur in
all the following equations.

After a short calculation we get for the Dirac equation

YW,t+ro¥ =0 4.1)
the 3-covariant form
3 "
'}'a W|.a+ya4lp+’<0q’ = 0. (4.1&)
In an analogous way we determine the 3-covariant form of the iterated Dirac equation
ik R 2
T;k + _4— —'Ko T = 0 (4.2)

and obtain the result

1 . R
— (1)) "= 0,6, ¥)— K, ¥ + (-;4— —xg) ¥ =0 (4.2a)
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5. Orthonormal systems

Let us look for a differential operator which provides an orthonormal system of
functions in terms of which it is possible to expand the solutions of the Dirac equation.
As this operator we take

3) no3
D = in {; 7 V,+ [% (K+ 7’“%") +K0~;]} 6.0
with Puy = uyy,. Further we consider the eigenvalue equations
Duy = myuy (5.1a)
and
Dvy = —myvs. (5.1b)

In general, the eigenvalues m; as well as the eigenfunctions vy and v are time dependent,
and the interior metric of the hypersurfaces determines the modes of the fields. (X labels
the various eigenfunctions and is not a bispinor index.)

The differential operator D is self-adjoint if certain integrals over 3-dimensional
divergencies vanish. Consequently the eigenvalues mjy are real and after an appropriate
normalization the eigenfunctions satisfy the following orthonormality relations:

= A ® s = @
fuyus [ g &®x = —idgy = [vgvy [ g dx,

€]
{uyyvy \/ g d°x = 0. (5.2)

Further we postulate the completeness of the system of eigenfunctions

(€]
\/ g ¥ [1:(Xux(x) + 0505l zes = PO(x, X), (5.3)

where the two-point function on the right-hand side of each hypersurface is defined by
ug(x) = | 8(x, X)uy(x)d’x. 5.4

We emphasize that the completeness relation (5.4) represents an additional postulate which
is not immediately derivable from (5.1). In any case it is a rather difficult mathematical
problem to prove the completeness of the system of eigenfunctions of a differential operator.

The completeness relation allows for the following generalized Fourier expansion
of the field ¥:

Y =Y (bsup+divy), (5.53)
—qi = E (b;{'az"*"dzz'x). (S-Sb)

Thereby the sum covers the complete set of eigensolutions of equations (5.1) and the
coefficients depend only on the time coordinate.
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6. Commutation relations

After having investigated the classical theory let us now turn to quantum theoretical
considerations. From the usual quantum field theory we take over the definition of the
canonical momenta

oz ?
=
o
With the aid of the Lagrangian of the Dirac field

3) _ (3 e __
y = —ﬂ\/g [‘I’ 'ya ‘)U“a‘*' ?')’64"1"*‘!\'0?]{1]]

IT)‘-———A
n=— | g ¥y

The covariant generalization of the canonical anticommutation relations reads:

we get

& _
/g {PC), P} izes = —id(x, x),

{l]l(})’ ql(x)}x,;ss = 0 = {W(})a ?(x)}x,x—eS' (61)

Together with expansions (5.5) these relations are completely equivalent to the equal
time anticommutation relations

{by, bE} = 05y = {ds, dE}. (6.2)

All further anticommutators vanish.
Analogous to the usual quantum field theory the operators b} and di are formally
considered as creation operators and b; and d; as annihilation operators, respectively.

7. Equations of motion in the Heisenberg picture

Because of the completeness relation (5.3) we can write down the following expansions:

L)

n[64+%(K "n’ )] us = z(czx“z +ag;vy),
(3)

[54+7 (K+ - ? Y )] Uy = Z (dysvy +byyuy).

With the aid of the orthonormality relations we obtain for the coefficients, e.g.

3 )
Cypy = i fnuzyli64+%(K+ 71_.; y”)] uy | g d°x (7.1)

4 * * *
with Cyig = —Cypyy dzrz = “'d):}:' and Ayy = "‘brzr.

2 Point denotes partial time derivative.



Obviously the result (7.1) is 3-covariant and we can make the coefficients vanish
for static gravitational fields. Since the bispinors «; and vy are related to each other by
the orthonormality relations (5.2) there is no connection between the coefficients
¢y-y and dy5. This expresses the well known fact that the bispinor field ¥ describes two
different particles in Minkowski's space, namely electrons and positrons.

Inserting the expansions (5.5) into the Dirac equation (4.1a) it is possible to derive
the equations of motion for the time dependent operators by and d;. The result is the
following system of ordinary differential equations:

BZ = -i’nsz‘— Z (bZ'CZE'.*-d;’bEZ/)? (7.23)
d; = lm:d;- Z (d;»dx):f +b21a£zr). (72b)
By means of these equations it can easily be shown that the canonical anticommutation
rules (6.2) are time independent. It means that if these anticommutation rules are

fulfilled on an initial hypersurface S, the same statement is valid for all other hypersurfaces.
We can give the equations of motion (7.2) the alternative form

by = i[H, b;], di = i[H,dl] (7.3)
if we take for the quantum Hamiltonian the Hermitian operator
H =Y myblbs~dd)—iY ¥ (csobiby

+dyydsdt +asydsby + by bldl). (7.4)

The Hamiltonian (7.4) is closely connected with the Hamiltonian H’ which is given by
3y
H = [nT} | g dx,
and that appears in the equation of motion

¥ = {[H', ¥].

But only in stationary gravitational fields H and H’ are identical because of the time-
-independence of u; and vy (see Sect. 8).

Finally we remark that the coefficients (7.1) are not conformally invariant. Therefore,
in general they do not vanish in conformally flat space-times. This means that massive
spin-} particles can be also produced from the vacuum state in conformally flat space-
-times. This statement agrees with corresponding results obtained by other authors for
special cosmological models [6].

8. Gravitational fields with symmetries

The goal of this section is to extend the results obtained for the real scalar field and
the electromagnetic field in [2] to the Dirac field on the one hand and to specialize the
results of the preceding sections of this paper to metrics with certain symmetries on the
other hand.
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In the classical theory the following conserved quantities correspond to the symmetries
expressed by the Killing vectors £, in accordance with Noether’s theorem

3) 3
Eq = | &oTen, \/ g d*x. (8.1a)
s

Since in the case of the Dirac field the Lagrangian vanishes if the field equations are
satisfied the conserved quantities E, can be written in the form

. 3y
Eq=—{ 'ny?’\/g d’x, (8.1b)
S 2
with £ describing the Lie derivative with respect to the Killing vector &,
Q

In the quantum theory the bispinors ¥ are operators, and each symmetry trans-
formation in space-time induces a unitary transformation in the Hilbert space [2]. The
Hermitian generators of these unitary transformations correspond to the conserved
quantities (8.1b) of the classical theory and the equation

[Eq Y] = — £y (8.2)

is valid. Further one has to expect the validity of the relation
[Eﬂv Er] = “ngera

also in the case of the Dirac field. Thereby, the Cg, denote the structure constants of the
group of motion. After some calculations we have

3)
[Eq. Ef] = “iC?ero—ifszr;k \/ g d’x (8.3)

with
Ror = _2i1;é?9¢§£r]w
and
M = im+ M

If certain conditions are fulfilled it can be shown by means of the Gaussian theorem that
the integral over a 3-dimensional divergence vanishes.

The existence of the time-like Killing vector €™ = 8% gives rise to a conserved quantity
(the energy) which coincides with the Hamiltonian (7.4). In this special case (8.2) yields

[H,¥] = —i¥.

3 For a group of motion with r parameters we have 2 = 1,...,r.
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9. Summary

We investigated the quantization of the free Dirac field which is influenced by a classical
gravitational background field. Our method consists in the selection of 3-dimensional
spacelike hypersurfaces in an arbitrary space-time.

It is possible to construct a self-adjoint first order differential operator. Thereby,
we have to pay attention to the fact that the 3-covariant derivatives and the invariant
time-derivatives of the Dirac matrices do not vanish. The discussion of the corresponding
eigenvalue equations (5.1a, b) shows that it is possible to derive the correct orthonormality
relations (5.2).

The expansion of the field operators leads to a quantum mechanical problem with
the quadratic Hamiltonian. Because of the time dependence of the eigenfunctions u; and vy
this Hamiltonian does coincide with the one constructed from the energy-momentum
tensor only in stationary gravitational fields.
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