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QUANTIZED SCALAR FIELD IN CURVED SPACE-TIME
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The influence of a time-dependent gravitational field (Robertson-Walker metric with
spherical 3-space) on a quantized scalar field conformally coupled to the geometry is studied
for two different cases: prescribed background field and reaction on the metric. In the latter
model, the expectation values of the stress-energy tensor are the only source terms in the
Einstein equations. The equation of state contains the limi.ing regimes of matter-dominated
(P = 0) and radiation-dominated (P = % ¢) dynamics.

1. Introduction

In the Heisenberg picture the quantization of the scalar field in cosmological models
has been studied by several authors [1-4 and references cited therein]. The pioneering
work of Parker and Zeldovich suggests the relevance of curvature-induced creation of
particle-antiparticle pairs for anisotropy damping near the cosmic singularity.

Our treatment starts with the Schroedinger equation for the probability amplitude [7].
The following viewpoints are adopted:

1. The prescribed gravitational field varies in a special way between the remote past
and the remote future where it is static (Einstein universe), therefore a definition of the
vacuum state should be possible in these asymptotic regions. The considered model admits
an exact solution; we find the expression (24) for the particle-creation rate of the vacuum
state.

2. We investigate the problem of the reaction of the quantum field on the classical
metric and vice versa. Apart from the expectation values of the stress-energy tensor of
the quantum field no other sources are included in Einstein’s equations. We choose an
appropriate state and subtract the vacuum terms. The simultaneous system of the Schroe-
dinger and Einstein equations reduces to the equations (27). They have been numerically
integrated over that range of the evolution in which the results significantly deviate from
the WKB computation. Near the singularity, which cannot be avoided in the model
considered here, the equation of state changes continuously from P = 0 to P = je.
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2. Classical field

The real scalar field U conformally coupled to the geometry satisfies the classical
equation?

. (R,
U,i’,+ -g -—m U = 0 (\1)

From the associated Lagrangian the stress-energy tensor
T, = 0+~ (R,U 4+ U U
ij = Ot g;;( GUTH U= 85U ),

he

R
0, = 7[“U,iU,j+% gij (U,kU’k+m2U2—- < Uz)]

(©;; = canonical energy-momentum tensor) can be derived in the usual way. The tensor
T;; is symmetric, divergence-free, and its trace vanishes for m = 0,

T, =Ty TY,;=0, T/ =mheU @)
The gravitational field is described by the metric
ds? = K2(t) (—dt* +do?), 3)
where K is the radius of the universe and the unit 3-sphere is endowed with the line element
do® = y,dx°dx®, a,b=1=3, 7= det(y,)

By a prime we denote differentiation with respect to the dimensionless time coordinate
xY = r. The independent components of the Ricci tensor are

ROO — _3K~4(KKH_K/2), R = —‘6K_3(K+K”).

We specialize the field equation (1) and the essential component of 7; to the metric (3):

, R
—(K*U'Y +K*U S+ K* (~6— —n12> U=0, 4
he . ' R
T,° = — [% K ?U?+t K U U5 K‘ZU,G“‘U+%—(R0°— ?) U?
mz
+ U2+K’K'3UU’]. (5)

Finally, we mention the definition of the canonical momentum conjugate to the
field U,

k ~ 2177
I = —+/3 KU
m

! Indices i, j, ... = 0—3, R = scalar curvature, m = moc/fh (me = rest mass).
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3. Schroedinger equation and expectation values
With the aid of the well-known equal-time commutation relations and the Hamiltonian

1 ~
H=— J 0,°K*\g d*x (6)
P

one easily verifies that the equations of motion
i i
U’:T[H’ U], H'=T[H,H]
[2 1

are completely equivalent to the operator field equation (4). We prefer the coordinate
representation of the commutation relations [7]

ho z : 0
U= Z qnlsnls II = '_'\/7 Snl PO (7)
! O
where U and IT are expanded in terms of spherical harmonics S,;, summation runs over
all modes (indices n, /). The partial derivatives with respect to g,, act on the probability
amplitude ¥, which satisfies the Schroedinger equation
oy

hi-—— = HY,
ot

h 2 g N ¢ ‘ 2 4 : R ‘
H=—| -m?’K™? —= +K? n(n+2)qu+K*{ m*— — ' G
2m ain L J 6

This equation can be solved by separation. Usually we shall consider only one mode and
omit the indices denoting the various modes. The formulas hold for each mode separately.
For states having the proper symmetry of the space-time a summation over the index / is
necessary, this explains the factor (n+ 1)? (=number of independent modes for fixed n)
in the equations (17).

We consider two specifications of the probability amplitude:
the *‘coherent state”

©)
¥ =v " exp[—1 Ag—p)’] 9)
and the “N-particle state™?
(N) 2
¥ o= u" A y(vg) exp (1 2¢°). (10)

In the ordinary quantum mechanics as well as in the quantum field theory in Min-
kowski space-time these wave functions denote a coherent state (Glauber state) and
a proper N-particle state, respectively, and the quantities 4, u, v, y, v are constants. Both

2 sy = Hermite polynomial of order N.
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expressions (9) and (10) are special solutions of the Schroedinger equation (8), provided
that these quantities satisfy a system of ordinary differential equations: If 1 is known
from

i =miPK2~-A4, m-A=Kn+) +K*m+KK", (1)

then the remaining functions of time can be obtained from

v’
—i— = mAK 2+ Ap®, iy’ = Ap,
v
u' v y)
—i— = mK *A+2N), i— = mK‘Z(~ —vz).
u v 2

Introducing in place of 2 a new complex variable y,

. Y
mi = —iK*{1In-=-}, 12
() o
we get the differential equation of the harmonic oscillator with time-dependent frequency,
y+Wity =0, W?=(@n+1)2+m?K? (13)

(parametric resonance). Quantization in the Heisenberg picture also gives rise to this
equation. It is convenient to use the normalization

Yyt ey = (14)
(Wronskian condition). The expectation value of some dynamical quantity f is defined by

(15)

- >

/= _j V¥ ¥dq, f=/f(g.p,1), p=

&) @

Especially, for the states mentioned above we evaluate the following expectation values:

(©) (N)
¥, Eq. (9) ¥, Eq. (10)
vacuum state: =20 N=20
~ A*u¥ 4 Au
4q — 0
A+ A*
- AV (p—p*
P —hi —_&li,ﬂ_) 0
A+ r*
— 1 L7 2N+1
1 Ay 1 FEwL
— hiaax h2AA*
2 - +p? 2N+ ——-
P FSTIR @N+D
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We are interested in the expectation values of the energy-momentum tensor,

—P

. P

o

T/ = p (16)
&

(P — pressure, ¢ — energy density). Using the expressions (5), (6), (7), the definitions
(12), (15), (16) and the normalization (14) we obtain for the “N-particle state” (10) the
result

hc(n + 1)2 't 7
= s WHD Y +W Zyy®),
he(n+1)* . . .
= o (NED G =Wy 2+ Dy, (17

The computation of P is facilitated by employing the trace equation in (2). The divergence
relation

T/, = 0 > (éK’) = =3PK’K’ (18)

is automatically fulfilled. Apart from the vacuum terms the expectation values (16) formed
with the coherent state (9) coincide with the corresponding classical expressions.

4. Prescribed geometry

We want to avoid approximation methods (WKB) which are usually applied to solve
equation (13). In order to get an exactly solvable model, we assume for the radius of the
universe the simple time dependence [9]

K? = K22 +a?ch™ 2 (B1) (19)

(Fig. 1). The real parameters « and f can be chosen arbitrarily. Thus, we restrict ourselves
to a Robertson-Walker metric which is static before and after the non-stationary period.
In the asymptotic regions ¢ — + oo the usual particle number interpretation and, in partic-

2
I's

Fig. 1

ular, the definition of the vacuum state should be possible. We start with the vacuum
state at t+ - —oo, vary the background field according to (19), and compute the change
of the state in question. We have to solve the key equation (13). In general, this state taken
at t - +oo differs from the vacuum state in future time infinity. That is, the non-stationary
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(0
gravitational field gives rise to particle creation [1]. The state ¥ corresponds to the vacuum
in the limit z = —oo, if we realize the asymptotic behaviour
t—> —: y~e o= m+)+miKl

By making the substitutions

4
(O = (1= 2w, z=4(-8, ¢&=th(B)

we transform the equation (13) into the hypergeometric differential equation

2

d*w aw
z(1-2z) =3 +[c—(a+b+1)z]E —abw =0

with the abbreviations
a=id—-s, b=id+s+1, c¢=id+1, d

- 4m2d2 1/2

Up to a constant factor the regular solution y with the correct behaviour for ¢t - — oo is

=2
B’

y = (1-£2)%F(a, b,a+b—c+1;1~2z) (20)
(F — hypergeometric function). By means of the formula [9]
Fla,b,a+b—c+1;1—-2) = CFla,b,¢c; 2)+ DF(a—c+1,b—c+1,2~c¢; 2),
=I"(a+b—c+1)1"(c—1) D=F(a+b—c+1)F(—c+l)

I'(a)['(b) ’ T(b—c+DI(a—c+1)
(I' — gamma function) the asymptotic expression for t - +oc (z - 0) can be read off
from the equation (20),

t— 400 y ~ Ce-i(:)t+De+iwt’
where the coefficients C and D are given by

cor = S e 1y ces @1
sh? (nd) ’ ’
Subtracting the vacuum terms we have, in the limit # - +o0, for the energy density and
for the pressure

= e cc*
2n2K,* @
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and

he(n+1)? K
P = f(;—la—)— (m+12ccs- "
2n° Ky w

2 2
0

(CD*e~25wt+Dc*e+2icut):} , (22)

respectively. The energy density is positive definite and independent of time, while the
pressure contains an oscillating part. The vacuum state in past time infinity is not energy
eigenstate in the static region after the variation of the background field has been performed.
The contribution of one single mode to the total energy is

E = -— wCC*. (23)
0
The comparison of this formula with the energy eigenvalues of the scalar field in the Ein-
stein universe [8] leads one to interpret CC* as the mean number of particles created in
this mode,
sin? ns

N=CCt= —5—.
sh? (nd)

(24)
There are certain values of the parameters, for which no particle creation occurs; in general,
however, N does not vanish after the influence of the external gravitational field. For
sufficiently rapid and violent variations (x and f very large) we obtain values (24) of any
desired magnitude. The sum of the energies (23) over all possible modes is convergent;
all zero-point energies have been eliminated. Hawking proved the conservation theorem [5):
If the stress-energy tensor obeys the dominant energy condition [6]

—e<P<e e=0 (25)

and is zero on an initial spacelike hypersurface, then it is zero at later times. Consequently,
T/ does not obey the dominant energy condition during the process of particle creation.
We state, that even in the asymptotic region ¢ - + o0 the pressure can exceed the energy
density. Choosing the parameters so that sin® ns = 1, we obtain from (21), (22) for the

maximum pressure
R 20 2 o [T 5
Pmax = [(n + 1) +m KO cn (7)] —3—0—15 .

Therefore, if the inequality
m?K,? (Ch % - 1) > 20°

holds, then the energy dominance is violated. Irrespective of the mode, this inequality
can be satisfied by

B2 < 1n*m*K¢.
The model considered here does not account for the reaction of the expectation values P
and ¢ on the geometry.
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5. Reaction on the metric

In the previous section we considered the scalar field as a test field. Now, by contrast,

the source terms of Einstein’s equations are the expectation values (17). At the instant of
™)
maximum expansion of the universe (K = K,,,) the state ¥ approximately describes N

independent particles with fixed energy and undetermined location. We give no account
of other modes than the lowest one, n = 0. Because of the very large number of particles
the vacuum terms can be neglected [2]. Thus, we bypass the renormalization procedure.
Under the conditions
N>, x=mK>»1

the expressions (17) are reduced to®

e = 3Bx~*(y'y"* +x7yp¥),

P = Bx*(y'y"*—x%yy¥),
The strong energy condition 3P+¢ > 0 is fulfilled, so that quantum effects of the scalar
field in the state chosen here cannot prevent the cosmic singularity. The avoidance of the
singularity by the quantum field in another state has been demonstrated in [2]; the model
universe has a minimum radius in the order of the Compton wavelength of the 7 meson
(x &~ 1). With the stress-energy tensor (26) the simultaneous system of the Schroedinger
and Einstein equations has the remarkably simple form:

aql { 1 2
qu=H‘P yV'i+xy=20

H

B — const. (26)

(27

. .\‘”+X — xoxyy* E

S
3; [
03..
A
al,
a2t ‘
| 1
! i
ark :
o S . ]
0% 107 —-—x 10%
Fig. 2

3 B = m*N#hc/6n2, numerical values: m = 7.2 - 10*2 cm! (% mesons), Kmax = 5.5 - 10?7 cm
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(xo = mK ,,; x(t) real, y(t) complex). The first integrals of motion, (14), (18), and
XX = X0y xyy),

can be used to check the numerical computations. The function x varies slowly, whereas y

oscillates rapidly. The condition

xx? <

(WKB regime) holds in a large range, in which the pressure is extremely small compared
to the energy density. Non-interacting particles fill the universe. Therefore we approximate
the model by the standard dust universe until x reaches values of about 10'®, Then modifica-
tions of the equation of state P = 0 occur. The numerical computations starting with
appropriate initial values at x = 10'® show that in the course of time the equation of
state aproaches P = } ¢. The ratio of pressure to energy density plotted against x in Fig. 2
becomes nearly constant at x = 10*¢. The numerical integration has been extended up
to x =~ 10, and no deviations from the P = { ¢ — law have been observed. Near the
singularity, the pressure and the energy density increase very rapidly — like in a universe
filled with radiation.

Conclusion: The description of the matter by the expectation values T; formed with
™
the state ¥ implies a remarkable feature: The equation of state changes continuously from
P=01tww P=1

I want to thank Dr. W. Littke for the numerical integration.
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