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ON THE SPECTRAL FORMULA FOR THE PRODUCT
By, o 0, 47(x; )0, ... B, A*(x; b)

By A. K. KWASNIEWSKI
Institute of Theoretical Physics, University of Wroctaw*
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The Killén-Lehmann spectral function for the product 9, ... 8,,4+(x; @)0y,... 9y, 4%(x; b)
is calculated. It is shown that the spectral function can be obtained without explicit cal-
culations of the integral by means of algebraic methods.

1. General considerations
1. When one tries to obtain a spectral representation for the product
Oy - 0,47 (x5 0)0,, ... 8, 47 (x; ), 1.1
where
i .
A+ ; - d4 ~igxg 5 2_ 2 ,
(50 = 55 | dae ™ Ba)ola” ~ )
one should consider the following tensor
DEF.
F (D) = [ d%04,, . 4,,000000(po — 30)3(q* = b*)S[(p—9)* —a’].  (1.2)

This integral was calculated by Thirring [1] in his book on electrodynamics for the cases
of N =0 and N = 1. For equal masses ¢« = » and N = 2 the integral was given by
Lukierski [2]. The problem of calculation of the explicit expression for# ,, . (p) leads,
fora # band N > 2, to new complications in comparison with the cases mentioned above.
The tensor #,, ,. depends on masses a, b and the four vector p,:

9-7#1 T UN = ‘a/—:ul -"MN(le; a, b)
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We would like to write explicitly this dependence and use it further to obtain for
Oyyore0y, 4¥(x; @)0,, ... 0,,4%(x; b) a formula analogous to the one given by Thirring for
the product At(x; a@)A+(x; b).

At first some simple results and definitions.

2 2 2
—a’+b
puquzp.qEAzp—a————'a
2
N=0
F =f=f(p* a,b)
T
=3 [(p*—a®—b*)*—4ab*]"*0(pe)0[ p* — (a + b)*],
N=1

R A 2
JI»L = Ff(p s a, b)p#

The tensor #,, ,. is a symmetric tensor with nonvanishing traces for any pair of u’s.
So, in general, we can say only that it is a linear combination of all linearly independent
tensors of N-th rank built out of the tensor g"" and the four-vector p*. Now we are going
to construct all these linearly independent tensors and then to express # with help
of them.

We introduce a short-hand notation

C(S) = {ls # ir’ is 7"' ir—l is # is+1}’
C(S9 n) = {’n 7é il #jm in '_7é i2 7é./n in # is #Jn}

Hi- BN

This is a set of conditions for single sum over j,:
C(b) = {lr 7!: is # jra ir—l #: is # jr-—l’ s is+1 ;é is 7é.js+l’
ir # js ?é jr’ ir—l # js # jr—-17 cees is+1 # js 75 js+1}'

This is a set of conditions for double sum over i;and j;: r >s>1,n = 1,2, ..., r. With
the help of these abbreviations we are able to construct out of g*” -tensor and p” -vectors
some very useful symmetric tensors.

DEF.
N N N
1
Les py ] = o D Buung, By s, Sy,
ir<jr fr-t1<jr-1 it<Jji
C(r—1) C)
N
r N — even. (1.3)

=—2-’
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For N—s even it follows

[gsay oo fliy oo By - 1y

N N N
1
= N—»S—_' guk"‘“"g“k"-‘ll‘lr-l g”"x‘”x’
) S ke<dy kpe—g<ly ky<ly
Cr=1)... CQ1)

C(r, s)C(r—1,s) ... C(1,s)
where r = (N—s)/2 and the sign A over y; means “'no p;’.
DEF.

(g;pspy oo tins ]

N N N
1 E § E ' N :
= Pus Pui; o pms[g; JTPR PO { SRR T N (1.9)

Let us notice that
Leipimy a0 = [gi 1y oo 1n]s
lg; pipy oy N} = PuPrs - Pune

2. With the help of tensors [g; p; py...;ty; 5] We can express the tensor #,, . as
follows

N —even
N/2
F ot un = ,,ZO [g: p; it - tiys 2n] FCEY. (1.52)
N — odd
(N-1)/2
F o oiun = ”Zg g ps g - bty 20411 CH) 4 (1.5b)

Our next task is to determine the coefficients C{¥’. We can always do it for any N because
F 4...uy fulfils the following equations:
N —even

ar

N
pm pﬁw'/’mmux = A f’

8uipaPps -+ PMN%;“ i = AN—2b2f’

$
i
L

=

(1.6a)

gmuzgmm Tt gﬂN—il‘N Hi BN
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N — odd
pux plmg;m e HN T ANf’

gmmpns pu:«g;m BN = NN“szf’

gﬂluz guN—zuN—xpuN‘gzm e UN = AbN—lf‘ (16b)

These are linear equations for C{V. It can be easily seen that the first one can be written
in the form

N —even
N/2
N 11N+ 2 (V) N
" (N=2m!p C5) = A7, (1.7a)
n=0
N — odd
(N=-1)/2
N a1
(2n+1>(N—~2n—1)!!pN+2 P, = A7, (1.7b)
n=0
where

N\  N!
(k) T kAN=K)!

This form of equations follows from the relation

N
Pus - Punl 85 P51y v iy 5] = (N=5)!! (5) P

To obtain other equations in explicit form we must know how to perform the contractions
written below

guluz fer g/lkuk+1p/lk+; e pﬂ;\,[g; p; }ll v :uN; l] (1'8)

where
k,l=1,2,..,N—1.

In Section 2 we perform the required calculations. Here we write only the result, i.e. all
the linear equations satisfied by the coefficients C{™.
N — even
Nj2

Y ¥ EMCmDy (N-MCE) = bYHAY, (1.92)
n=0 i=-—
step 2

step 2= {i= —M, - M+2,...,M-2, M}.
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N — odd
(N—-1)/2 M
Z, -Z_: EMQn+ 1D, 01+ (N=M)CS); = bY " M4Y, (1.9b)
=0 lﬂtep ;[
where
NIN+2)!! s
(1.10)

DANY = i i—sn ?

and E™ (s) are given by recurrence formulas in Section 2.
3. It is easy to notice that 8,,...0,,47(x; a@)0,,...0,, 4" (x; b) can be expressed in
terms of #,, ,.(p) tensors as follows:

8y e 0,47 (x5 @)0,, ... 8,,47(x; b)

1 (- : iox g
= - (27()6 “ llaui! e a d4pe P y "'ﬁ‘x’;‘\'iz”'""z"‘”"’v! e V¥m® (1’11)
1=0 i

iy ... it

We must distinguish two cases of N odd and N even, and include both in the sum ) . For
1=0

this purpose we introduce odd and even deltas
0; N—odd
8(N) =
1; N—even,
8%(N) = 1-8%(N).
The final expression for (1.1) looks as follows:
3y, - 0,47 (x5 )0, ... 8,,47(x; b)

n

i (=i
T’ Z I Z o O
1=0

if,.501=1
(m+tn-—1)/2
x{8%m+n—=0) Y [g —ib; g o iy o By oer iy Ve oo Ve 2K]
k=0
X jdsC(""”' D)4 (x; 5)
(m+n-1-1)/2
+8%m+n—-10) Y [gs —i0; g oo fliy ooe Py oe i Vi oee Vs 2k 1]

k=0

x T dsCgriT= 04" (x; 9} (L.12)
0
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2. Calculation of D(N) and EMX(n) coefficients
For even N we define
Ds(N) = Bupuy o+ gmv—xllzv[g; Py By - Hys S]‘

It follows from (2.1) that

, N+
Dy(N) = p* Do(N) = z) .

Using the following property of [g; p; u, ... uy; sl

) 2
Lgspipe o mvis] = o {8uunl 8 Pi sty o i3] -

+ Zuounl 85 Ps Mo or - 15 5]+ 8, 85 D5 Habte oo iy ST -
+ Zupunl 85 P Hys M3 oo M- 3 S]H oo F 8y unl &5 D5 My oo fin—25 5]}
one obtains

2

2 {N(N—-l) 3N
+ —
N-—s ‘

D(N) = - 5 } DN -2).
From (2.3) we get

(n+2)n

nH—s

S

Dy(N)
n=s+2

where

N
"Il a, =aas,...ay, i—even.
n=i

(2.1)

(2.2)

(2.3)

(2.4)

With the help of induction one can prove another useful property of [g;p; ty...1ux; 5]

tensors. Namely

Pulgs psiy oo ity 5]

1
= p*lg; psty . piys s—1]+ TlE s s+1].

(2.5)

We can now represent the contraction p,,...p, [8; p; tt1...py; 5] for M < N in the form

PuPus - Punel85 D3 Hy oo iy ]

M
= ZM EM(s)[g; ps tarss - iws s+i]s
2

step 2

(2.6)
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where “‘step 2” means that i = —M, —M+2,..,M—=2, M and EM(s) = 0 for all
i+s <0 and i+s > N—M. Using (2.5) ans (2.6) one can show that

E{*(s) = p*Ef3 () +(+9)ER (),
E9(s) = p*0(s—DO(N —s),

!
EP(s) = (i-i")— B(N =21 —0(1 +5),
s!

/= —k+2, —k+4, ..., k=2, 2.7)
where 6(k) = Ofor k < Oand 8(k) = 1 fork = 0. Unfortunately we are unable to solve (2.7).
We now perform the contraction
Bunux-1 -+ Bune vaune o Pune - Pur &5 P3 By oo pins 5]
= Y EMG)D (N-M). (2.83)

i=-

step 2

Equations (1.9a) and (1.9b) follow from (2.8).

3. Final remarks

The scheme presented above could be applied further to the calculations of expression
(1.1) for arbitrary n and m.

Our formula (1.12) is useful in the calculation of self-energy diagrams for particles
with higher spins. This application will be considered in our next paper.

1 would like to thank J. Lukierski for suggesting the problem and for critical
reading of the manuscript. I would also like to thank Professor J. Lopuszanski for
useful discussion.
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