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In this note we apply the results of our previous paper to the investigation of spectral
representation of one-loop diagram with arbitrary spin for a class of derivative couplings.

1. Introduction

The program of this work consists of two steps:

1. In the second section we give the spectral representation of the coefficients @, a,_
and a,_, defined by (1.1)

Ays, 1y = (=1 g*(No(p+g9—p —q') {a,P,(cos 0)+a,_,Py_(cos 0)

+ay_,P,_,(cos 6)+terms with spin < J—3}, (i.H
p\p?=02 mass M(7) 4
——<>~j— =45 ()
979 =0* szinj 7

Fig. 1. The Born term for the exchange of the spin J propagator with the self-energy loop

where the scattering amplitude A, is presented in Fig. 1. We assume the following form
of the Hamiltonian

H ) (x) = g(J): g (x)yp* 0, ... 0,,9,(x): +h.c, (1.2)
where ¢, ¢, are the scalar fields corresponding to particles with the masses g and b,

J J
and »***’, which belongs to the carrier space of the (E , ?) Lorentz group representa-
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tion, describes the particle with the spin J. 5, given by (1.2) belongs to the family of
Hamiltonians used to investigate the Van Hove-type of models of the reggeon ex-
change [1, 2].

2. In the third section we shall use another coupling for the calculation of the amplitude
from Fig. 1. It is given by

HP(x) = g(N: [0y, . 0 #2(D] [0, - Gy @i ()] (%) +hc,
n=01,..J (1.3)
and this is a simple generalization of (1.2).

Remarks:

1. We treat all the distributions formally, however, all the expressions, especially
spectral representations, can be understood in the framework of the distribution theory
in a rigorous way and we follow here the approach of Pfaffelhuber [3].

2. Having calculated the amplitude A4;, one is able to obtain the Van Hove-type
model as in [1] or [2], simply by summing it over J with help of the Sommerfeld-Watson
transformation.

3. Only the case of an integer spin is considered.

2. Calculation of the amplitude A; for coupling (1.2)
From [4] it follows that
A(x—y;a)d,, ... 8,,0,, ... 0, 4dg(x—y; b)

J o
i
= _(271)3 Z Lg; —id; py - pty, vy ... vy; 2k] J dsCP(s)f(s)Ap(x~y;5), (2.1)
k=0 (a+b)?

where the tensor [g; p; uy...pty; k], which is built up of the g** tensor and p*-four-vector,

the coefficients C{"’, and the function f(s) are given in [4]. So we have
I (M%)
A — _1 J 4J6 + o Ayl gy M1 BI3VE GV
g = (=1)'g"(N(p+qg-p'—q)p p 77— M)
J )

C5) Thvy o vasios M)
x ds[g; P; v, ... vy 2k VT4 V2308 - 05 o p'os, 99
J‘ [g 1 2J ] 92—5 QZ—MZ(J) p p ( )

k=0 (a+tb)?

where # = p+q and FZ;V(MZ) is an off-mass-shell propagator. 4, is a scalar function
depending on p?, p'? and p,p™. We can expand it in the basis of the Legendre polynomials
Py(cos 0) where 8 is an angle between p and p’ in the c.m.f.

J
Y. P(cos B)a,

(1Y% ‘ o 1=0
Ay = (-1)'g"(J)o(p+q—p'—q) PN
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Here we shall calculate only ay, a,-;, a,-, coefficients of this expansion which correspond
to the parent and the first two daughter trajectories if an application mentioned in remark 2
is made.

To calculate (2.2) we expand the off-mass-shell propagator F,’,;V(M 2) with respect
to the on-mass-shell propagators [2].

F}{[ ves BISVL wae VJ(MZ) = F‘{1 cee UTIVL a0 \'J(gz)
J
+c1 N Zl gﬂigujr:l—..l.;i oo BIVL ...Cj...\‘](gz)
i,j=
J
: : 2.2 ; 2 P2, 2,2,2,.2,.
+ {C2< ;2‘“ g!‘mvn(‘a} )+ 92 gﬂ(#j(gz)-*-c:! —”_"—%_‘
i<j
m<n
X F,’,l'2 By oo BTV oo S o V1(9’2)+(terms with spin << J~3), 2.3)
where
1 P*-M*\J) 2 4
)= —— ————s", (=" ———————(, (3= — ————C(
! J M*)2* 2 Ji-nEi-n v JeJ-1 !

and g means “no u”.

B

2.2,
P?

guv(gz) = Zuv—

Substituting (2.3) into (2.2) and performing all the necessary contractions we obtain
as a result

1 2
Ay = (-1 g*Dd(p+a—p —a) [m]

x {a;P;(cos 0)+ay..,Py_(cos B)+a;_,P;_(cos 8)

+ terms with spin < J—3}, 2.4)
where
, v CZJ(S)
ay = (=1'D,Jp!’|p" J ds —3—=f(s),
P —s
(a+b)?

ay_y = ;22 (J = DAPp) (2p) (= 1) 7Dy 1pl P!
X j ds

(a+b)2

27 27
Cs (S)2+ (/;1 (S)f(s),

P —
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_ g g JU-D7*
Ay_a = ("1)J 2DJ~2»PIJ 2IP IJ 2(1—2)![ 2 ]
[ dgCEN+d,C 44,000
x J ds 29 g‘,z‘_: 272 f(s).
(a+b)2

Coefficients Dy, dg, d, d, are given below
2’(J')
@n!

J

2 (PP) (P'7 )(p )

?

(15¢5+2¢505+3¢3) +3(c3 +¢2¢3)d,

(2p)(2p')
g 3

do = 2¢,1p*1p'|
dy, = #* {462@‘2 P12 4 3(c3 +2¢,¢3)d;5 +6(cy¢3 + €3)

dy = 3Q2+42%+ P +cy0,P%dy + (PP (PP),

2y’ [p,za (p'ﬂf’)] L% [pz_ (p@)] |

d3 = g/Z gZ '5]2 ‘0/')2

3. Calculation of the amplitude A, for the coupling (1.3)
In full analogy with the previous case we get for A; presented in Fig. 1

F;; 2as OXIVE e VJ(MZ)
[2°-M*(J)]?
xF[0,, ... 0,0, ... 0, 4x(x; a)0,,,, ... 0,,0,,,, ... 0,,4p(x; b)]
XL, usiar o as(MOPsy oo Polansy oo Qo (3.1)

where # denotes the Fourier transform and according to [4] the Fourier transform of
the expression in brackets on the right-hand side of equation (3.1) is given by

Flo,, ... 0,,0,, ... 0,, F(x a)a,,n“ e 0,05, - 0,,45(x; b)]

- 1 V .@
=it 2,
=0 ig...iuq=1

Ay + XDy, o Pollons s -+ Doy

Joraal
{5E(ZJ-I)Z [g: 25 1yvy oon Tip oo Ty oon fyvy; 2K] J‘ df(s) (s)
(a+b)?
~1
- 2_ ©
2] k()

Kal

+8°Q7 -1 Z [g: P vy oo Ty o Ty e pgvy; 2k +1] j df() 3.2)

(a+b)?
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where

v Viy—n  for iy, .G >n,

ﬂil...ﬂi, fOI‘ il""’ ilén.

Substituting (2.3) into (3.1) and after performing some tedious contractions we obtain
as a result

Ay = (=1 g*DNd(p+q-p —q) [#*—M*(N]?

x {b;P,(cos 0)+ b, _P,_(cos 6)+(terms with spin << J—-2)}, (3.3)
where
by = —CfDJ—1(J‘1)!g4
(Jn3_n2)cz.’—2+n2czl P .
X { f dsf(s) o (#p) (ZP)) (3,4 (0™~
(a+b)2
N j 4) {(J—n)nz—n(n—1)}2c3"2+n(n—1)c§“2
Po—s
(a+b)?
x[(29) (24') (3,4") ™"~ '@,q"Y " +(2) (Pp) (B0 0V T
+(29) (Pp) (0,4" (0™ " 1]} T
and
% 2.I
by = de(S) DJ(J n)~%(3,4" ~"(@,q™Y ~"ipIp'V,
(a+b)?
ipi* = pp*,  (Pp) = Pt
#x’*

(3“q“)1 means 5#1‘1 0,,9" éwq‘” and 23,,(2');) is a derivative with respect to p(p;).
0 is an angle between p and p’ in the c.m.f,

4. Final remark

The amplitudes calculated here could be used to investigate, in more detail, daughter
trajectories and for the broader class of derivative couplings than the ones encountered
in the existing literature [1, 2].

I would like to thank J. Lukierski for suggesting the problem.
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