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Absolute values of the real part of the pp, pp forward scattering amplitude and the
slope of the differential cross section have been determined on the basis of data on the elastic
differential cross section outside the region of the Coulomb interference. The method is
based on the optimal use of analyticity of the scattering amplitude in the cos 0 plane and
leads to significantly larger absolute values of the real part and slope in comparison with
those obtained by means of the Bethe formula on the basis of data on differential cross
sections in the region of the Coulomb interference.

1. Introduction

According to the commonly accepted point of view, the most precise way of determining
the real part of the scattering amplitude of charged particles at high energies is the use
of the Bethe formula {1]. For this purpose one must have data on differential cross section
of elastic scattering at small angles where the interference between the nuclear and Coulomb
interactions strongly manifests itself. Concrete methods of measuring differential cross
sections at very small angles and analyses of experimental data by means of the Bethe
formula in order to extract the real part of the pp forward scattering amplitude are described
in detail in reviews [2, 3].

* On leave of absence from the Institute of Nuclear Physics, Moscow State University, USSR. Pres-
ent address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, HoZa 69, 00-681 Warszawa, Poland.
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In our paper we first dwell on difficulties (in our opinion serious) of use of the Bethe
formula for obtaining the real part of the forward scattering amplitude. Then we describe
another method (the idea of which was given by us in Ref. [4]) of determination of the
real part of the forward scattering amplitude and the slope, based on the exploitation of
analyticity of the scattering amplitude in the cos ( plane. Later we present the results of
concrete calculations of these quantities in the case of the pp, pp forward scattering.
At the end we discuss significant discrepancies in estimations of the real part of the amplitude
and the slope obtained by means of two different methods and we consider a possibility
of comparing the experimental data with the theoretical predictions.

2. Analysis of data on differential cross section of elastic scattering of charged particles
by means of the Bethe formula

The Bethe formula has the following form:

do s 42 2 4 2
e E1 A+ Re” A1)+ Im” A(1)—2A(t) Re A(1)

44 Im A(Dn ] 1.06 1
—4AD) Im A(H)n ﬂ“LIO‘jI, nH

where ¢ is the parameter of normalization!, A(r) = (\/n/k)(2h?ne[t)G(r) is the Coulomb
amplitude, G(r) is the nuclear formfactor of the target particle, ¢ is the wave number,
n = 1/1378,, . is the Coulomb parameter, R is the radius of strong interactions, Re A(1),
Im A(r) are the real and the imaginary part of the amplitude of nuclear interactions. The
scattering angle 0 in the c.m.s. is related to the momentum transfer in the usual way
t = —2k*(1 ~cos 0).

We now want, by means of Eq. (1), on the basis of the measured values of do/dt
at small 7| and the theorectical values of A(s), to determine the quantity Re A4(0). One
needs, for this purpose, to postulate in advance somc functional forms for the real and
the imaginary part of the amplitude, i.e., to parametrize somchow Re A(t) and Im A(7).
Such functions are not known. Therefore, the first step which is made in order to apply
practically the Bethe formula consists in postulating the equal (but unknown) dependence
of Re A4 and Im A on 7. Then Eq. (1) can be rewritten in the following form

do 3 2 ” 1.06 \] ,
----- = &| A+ Im? A() (2 + 1) =24 [ a+2n 1n J (1)
dt vRO
where
Re A(0
o= A0 @
im A(0)

does not depend on 1.

! This parameter is not related directly to the Bethe formula. However, it makes it possible to use
the formula also in those cases when only the relative values of differential cross sections are available.
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There are no arguments in favour of such an assumption, aside from hand-waving
arguments that in the small interval of |f|, where fits are carried out, Re A(¢)/Im A(¢) can
hardly be very different from a. Recall, however, that just in the case of the pp, pp scattering
Re A(¢) has a pole at + = m? and Im A(r) does not have it. Therefore, their behaviour in
the region of small |¢] may be rather different. There are also arguments (see e. g. [5, 6])
according to which the ratio of the real to the imaginary part of the amplitude for non-
forward directions can reach large (small) values and not at all be a constant.

Equation (1), where the unknown function a(7) has been replaced by an unknown
constant «, still is not suitable for practical use. One has to make the next assumption:
to postulate some functional form for Im A(¢). It is common to make the following choice:

) do \* 2bt
ImA({t) ={—] €7, 3)
dt Jop
where (do/dt),,, is an optical point which can be determined from the data on the total
cross section. The parameter & in this case coincides with the slope of the differential cross

section defined as
1 (e 4
slope = — | In{| — .
p dt dt nuclear, ( )

Now Eq. (1) can be rewritten in the finite form

dt dt

24 t)\/—:w) o sonin 0 1
- - e a+2nln——-1].
d dt Jop vRO (%)

One should note that the only argument in favour of the choice (3) is the assumption
(see, e. g. [2]) that at small |7} and high energies the scattering is of a diffractive nature. On
the other hand, there are cxperimental as well as theoretical arguments against such
a functional form. It has been observed that the slope inside the diffraction peak may have
breaks (see, e. g. [7]). There are predictions (¢. g. [8]) that the slope must grow continu-
ously when 7! tends to zero.

Equation (1) which is finally used in practical calculations contains three unknown
parameters: £, b and ¢. As a rule, it turns out to be impossible to determine all of them on
the basis of measurements in the region of the Coulomb interference, i. e., due to correla-
tions they are determined with large errors. Therefore, in practice sometimes the following
procedure is carried out: The parameter b is determined on the basis of data outside the
region of the Coulomb interference, it is assumed that » keeps the same value in the region
of the Coulomb interference, one puts it fixed in Eq. (1”’) and determines from the fit
the parameters ¢ and « with small errors.

What can be said about the reliability of the results obtained in such a way ? Naturally,
the results are based exclusively on the belief in validity of assumptions (2) and (3) in the

4o 5[Aé(1)+ (ii) (@ +1)
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region of measurements of do/dr, and also in the region of smaller |{¢], up to r = 0. The
latter circumstance is very important because the use of the Bethe formula does not, of
course, remove the problem of extrapolation of nuclear amplitude from the region ot
measurements to the forward direction.

The above mentioned difficulties connected with the use of the Bethe formula are,
of course, well known. We, however, would like to call attention to the following, somewhat
strange, fact: There is no reflection of hypothesis of analyticity of the scattering amplitude
in the r-plane in the above assumptions (2) and (3). On the other hand, this hypothesis is by
no means less fundamental than the hypothesis of analyticity of the scattering amplitude
in the s-plane, for testing of which, as a matter of fact, one tries to extract from the experi-
ment the quantity x. Moreover, it is clear that neither Eq. (2) nor Eq. (3) is consistent
with the hypothesis of analyticity in the whole 7-plane. Are they consistent with analyti-
city in 7 in that interval where fits are carried out and through which the extrapolation to
the forward direction is performed, is not known a priori.

3. Parametrization of differential cross section taking into account analyticity in the cos 0
plane

Analytic properties of the scattering amplitude in the cos ¢ plane were investigated
rigorously for the first time in the paper of Lehmann [9]. He showed that the real and
imaginary parts of the scattering amplitude are analytic functions in certain ellipses in the
cos () plane. Martin [10] succeeded in proving that the scattering amplitude is analytic in
significantly larger domains of the cos ¢ plane. The detailed discussion of these questions
is given in the review by Sommer [11].

In our problem the only measured quantity is the differential cross section. There-
fore, we shall not distinguish between the analytic properties of the real and imaginary
parts of the amplitude and shall identify the domain of analyticity of the differential cross
section with the domain of analyticity of the real part which is smaller than that of the
imaginary part.

We shall start with the assumption that the differential cross section is an analytic
function in the cos 0 plane with the following analytic properties: in the case of the pp
scattering there are symmetrically situated poles and cuts in the /- and w-channels

”?i
(COS o)polc = i <] '*'r -21-\,—2-) s (5)
(cos 0) e (1g 2= o
cos eainning — = - 1:
( :f the cmg k- / (

in the case of the pp scattering there arc analogous pole and cut in the r-channel, in the
u-channel there is no polc and the cut begins much further away

: me,
(COS O)bcginning = - 1+ T . (7)

of the cut
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How to parametrize the differential cross section taking into account these analytic
properties in the cos & plane?

First of all one should introduce the pole terms in do/dr. Their explicit form is known
[12]. Moreover, one can evaluate their magnitude, because they depend on the well known
coupling constant g,fopp, and subtract them from do/dt enlarging thus the domain of analyti-
city. One can act also in another way: add to the experimental data an extra “experi-

do
mental” point lim (f —m32)? o ~ g,fopp. In such a case the problem of extrapolation of

t-m2,
the differential cross section to ¢ = O is replaced by the problem of interpolatiori of the
differential cross section between the pole and the experimental data.

The functional form of do/dt on the cuts is not known. There are two possible ap-
proaches. The first consists in writing do/dr on the cuts in some parametric forms, the second
consists in dispensing with an explicit form of the function and in accounting the mere
existence of the cuts. The first approach inevitably leads to models (see, e. g. [8]) which,
however, should be better than the “models” (2) and (3). The second approach (that of
the present authors) can be formulated as follows: There exist measurements of do/dt
in a number of points in some interval of the physical region cos 6, < cos 0 < cos 8,,
the positions of the cuts of the function do/dr in the cos 0 plane are known. How to repre-
sent this function in the domain of analyticity, without introducing some explicit functional
form? Obviously, only one possibility exists; to write the function in a form of a series
and to find the corresponding coefficients by fitting to experimental data. Such a procedure
is mathematically well developed and is a subject for optimization. It was described in de-
tail in our previous paper? [4]. The essence of it is the conformal mapping of the cos
plane into the unifocal ellipse in the z-plane so as the region cos 6; < cos 0 < cos 4, gets
mapped into the interval —1 < z =<C 1 and the cuts onto the ellipse; do/dt is then expanded
in a series of the Chebyshev polynomials T,(z)3:

M

M = S—‘ A,B,T.z2(D], (8)

dt i

m=1
where B,, are quantities related to dimensions of the ellipse, 4,, are coefficients to be
found from a fit. On the basis of these coefficients it is possible to construct certain func-
tion @ 4 which, when added to x?, gives the quantity X. The minimal value of the latter
corresponds to that number M of terms in the expansion (8) when one should truncate it.

2 In a broader aspect such a problem belongs to the sc-called inverse problems. The detailed discussion
of them in elementary particle physics and of the corresponding mathematical technigues is given in re-
views [13-18].

3 It turns out that such a series is converging maximally fast and leads to the smallest possible errors
in the process of extrapolation. In the present paper we consider the region outside the Coulomb inter-
ference, therefore the expansion (8) is simpler than the expansion (18) of Ref. [4].

4 Due to the difference of the expansion (8) of this paper and the expansion (18) of Ref. {4} one must

m

replace Eq. (19) of Ref. [4] by hy = Am+1/d. Ak, (Il <m < M—1).
k=1
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After fitting the series (8) with the optimal number of terms, one carries out the ex-
trapolation, i. e., evaluates the series at z = z (0), obtaining thus (do/dt),. Further, one
can calculate the quantity |o|:

da/dt
lal = L,L_)ﬁ’_ —1. )
(do-/dt)opt

The slope is evaluated according to the definition (4) where (do/dt)yciear is substituted

by the series (8).

4. Analysis of experimental data

We have reanalyzed, according to the above scheme, experimental data on dojdt
outside the region of Coulomb interference (|z] = 0.05 (GeV/c)?) for the pp scattering
from 1.349 GeV/c to 21.88 GeV/c [19-26] and for the pp scattering from 1.11 GeV/c to
40.1 GeV/c [27-39]. In those cases when data on do/dt were not presented in the form of
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Fig. 1. Ratio of the real to the imaginary part of the pp (O) and pp (®) forward scattering amplitude

obtained in present work (signs of & have been chosen arbitrarily) as a function of momenta of the initial

particle. Solid curves correspond to dispersion calculations of Ref. [45, 46], dashed ones to calculations
of Ref. [43]. Errors originating from the truncation of the series (8) are not shown
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Fig. 2. Slopes of the differential cross section of the pp (O) and pp (@) scattering at ¢ = 0 obtained in
the present work as a function of momenta of the initial particle. Errors originating from the truncation
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Fig. 3. Illustration of the fit and of the exirapolation of the differential cross section of the pp scattering

at 10.8 GeV/c [24] using the exponent (10) (dashed curve, (do/dt)o = 102.7 mb/(GeV/c)?) and the expansion

(8) (solid curve, (do/dt), = 115.8 mb/(GeV/c)?). In the region of measurements both fits are practically
indistinguishable. The optical point (80.3 mb/(GeV/c)?) is marked by x
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tables we used compilations [40, 41] where numerical values of do/dt were extracted from
original papers.

It should be noted that in our analysis we have not used data on do/dr outside the
region of the Coulomb interference from a number of experimental works, e. g. measure-
ments performed at Serpukhov [42]. The point is that we need absolute values of do/dt
because in our metod (see Eq. (9)) |a| is determined as the excess of (dg/dt), over the
optical point. In some papers, hovever, among them in Ref. [42], even outside the region
of the Coulomb interference do/d: was measured in relative units only.

It should be stressed that when determining x| by the above procedure, it is very
important to take into account also systematic error of the differential cross section,
because even a small rise or fall of the curve of do/dr as a whole can lead sometimes to
large changes in the obtained values of |a|. Aside from that, it is crucial to draw oneself
back sufficiently far from small |¢| to be sure that the data used are not contaminated by
electromagnetic interactions.

The results of calculations of the quantity |«! and of the slope at # = 0 are presented
in Figs 1 and 2. In addition, as an illustration in Fig. 3 we show the difference between
extrapolations to the forward direction by means of the exponent

d 2
_O- — ﬁ ebt +ct (10)
dt dt J,

and according to the expansion (8).

It should be noted that our “‘parametrization” (8), contrary to Eq. (10), covers the
whole region of measurements of do/dt including also the diffraction minimum and the
tail of the differential cross section in those cases when measurements there exist. There-
fore, it is natural that the number of exploited terms in the expansion (8) is different for
different experiments. In Table we give one example of concrete calculations.

5. Discussion and conclusions

The values of («! and the slopes obtained by means of standard analyses, i. e., those
on the basis of the data on do/dr in the region of the Coulomb interference with the help
of formula (1), are not shown in Figs 1, 2 because they are well known (see e. g. reviews
[2, 3]). We note only that the values of a,, agree well with the curve (dashed one in Fig. 1)
obtained in Ref. [43] by evaluating dispersion relations. On the other hand, the slope for
the pp scattering is logarithmically rising from ~ 5.3 (GeV/c)~2 to ~13.1 (GeV/c)~? in the
region from 1.7 GeV/c to 2070 GeV/c, and logarithmically falling from ~13 (GeV/c)™?
to ~ 11 (GeV/c)? for the pp scattering in the region from 7 GeV/c to 70 GeV/c (see
review [3]).

Hence, our results differ from those commonly accepted. Our values of |a| and the
slope at f = 0 are significantly larger.

What can we say with respect to this discrepancy?

The drawbacks and possible mistakes, when using the Bethe formula, were discussed
in detail in Sect. 2. Concerning our method one can hardly find arguments against it from



285

the general physical point of view because it is free of any assumptions, aside from the
fundamental hypothesis about analyticity of the scattering amplitude in the cos # plane.
The problem reduces to stability and reliability of our model-independent numerical extra-
polation. Here again from the general mathematical point of view one should have no
objections, because our extrapolation is of the 1 — 1 type (see review [18]), i. e. the extrapo-
lation from a segment inside the domain of analyticity to a point (f = 0) also inside it.
Such an extrapolation is stable in the sense that if the errors of da/dt in the region of me-
asurements tend to zero then the error of (da/dt), also tends to zero. However, in realistic
cases when the errors of dajdt are not equal (o zero, the estimation of the error of (do/dt),
is a rather complicated task [13-18]. The errors shown in Figs 1, 2 essentially reflect only
the errors of do/dr in the region of measurements and are not connected with errors origi-
nating from the truncation of the series (8).

Both methods can also be compared as follows. Using the Bethe formula (digressing
from the poorly founded assumptions (2) and (3)) one extrapolates through a short dis-
tance on the basis of data in a very small (but close to cos § = 1) region of the cos ¢ plane.
In our method one uses the data from a much larger region of the cos 0 plane but one
has to extrapolate significantly further. We take the risk of saying that from the point of
view of analyticity the more reliable information can be obtained if one extrapolates
through the larger distance on the basis of significantly richer analytic information (data
in a wide region of cos 0 plane together with the knowledge of analytic properties in the
cos § planc), than when one extrapolates through a shorter distance on the basis of experi-
mental information in a tiny region and ignoring the global analytic properties of the
amplitude in the cos ) plane. The sense of the analytical approach consists just of the fact
that the behaviour of the function ““at the head” (r ~ 0) may be closely connected with
its behaviour at other values of ¢, among them also in the *“‘tail”!

Unfortunately we do not see any way of using in our approach the data in the
region of the Coulomb interference, and of combining them with data outside the region
of interference. The point is that as scon as one enters the region of interference one has
to distinguish between the behaviour of the real and the imaginary part of the amplitude
as a function of r. If we refuse to do this, as in our previous paper [4], when obtaining
the results presented in Table I of that paper, we immediately must believe in the assump-
tion (2) and the diflerence between our approach and the commonly accepted one consists
merely in replacing the parametrization (3) by the general expansion (8). Formally one
could usc two separate conformal mappings and two separate expansions: one for the
real part of the amplitude, another for the imaginary part. However, at energies under
consideration, the domains of analyticity of the real and imaginary parts practically coin-
cide. and having at the disposal only the data on do/dr one can hardly hope to separate
the parameters of both cxpansions.

Unfortunately, we also do not see a simple way of comparing the values of |«| and
the slope obtained by both methods with the theoretical predictions.

Duce to the presence of a large unphysical region and the unknown low-energy region
of the pp scattering the calculations based on dispersion relations do not permit us,
according to our understanding, to answer the question of whether, for example, at
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TABLE 1

Illustration of ihe method of fitting and extrapolation of the pp scattering at 10 GeV/ie [24], (doidt)opt

= 80.3 mb/(GeV/c)?, N is the number of experimental points, A is the number of terms ¢f the expansion

(8) used in the fitting. The quantities F/ and X are defined in Ref. [4]. The scries (8) should be truncated

at the minimal value of X. The value of slope is given also at 7,,,,x which corresponds to the experimental
point with the minimal 17!

Region of fit |\ doldt (1 =0) 50 7 £l X | slope (GeV/c)™?
it (GeV/e)? mbi(GeVie)? § =t { =0
| i
058—.824 |13
73.0+ .6 |3 137666 4.55 381.2] — — —
1239+ 1.6 411389 8206|2209, .74+.01 11.04.0 | 144+ .1
1158+ 4.0 | 5 1218 ] 843 2062 .66+.04 10.5+.1 130+ 4
9974107 | 6 | 11.26 | 1834 29.59 | .49+.14 9.5+.1 §2+1.7
1283+29.1 | 7| 10.83 | 32.04| 42.86 | .77+.23 10.6+.2 18.7+3.6

f

~ 10 GeV/c 12,1 = 0.6, as we have obtained, or lu,,{~ 0.3, as it has been found in anal-
yses of the data in the region of the Coulomb interference with help of the Bethe formula.’

As for the slope, it should be mentioned that the Regge theory gives only the energy
dependence and does not predict the value of the slope at fixed energy. The energy de-
pendence of the slope at 1 = 0 obtained by us qualitatively agrees with the commonly
accepted one. The large values of the slope are directly connected with large values of
la!. It was observed in all cases that in the region of extrapolation the slope continuously
increased with the decrease of 7.

The belief in our results (at least in the qualitative sense: values of (x| and the slope
at forward direction are larger than commonly accepted), according to our mind, inspires
the fact that a similar extrapolation procedure has been applied for many years with good
results (see review [I18]) to extract the coupling constants from the data on differential
cross sections for different processes. Moreover, in many cases the extrapolation to the
corresponding poles is carried out on the basis of significantly poorer experimental data
on dojdt and always over much larger distances than those concerned in this paper.

Perhaps, it would be interesting to carry out similar investigation in the case of the
=t p scattering where, on the one hand, the values of « have been precisely evaluated on the
basis of dispersion relations and, on the other hand, in the forward direction there are
no spin effects which are present and ignored in the case of the pp, pp forward scattering,
though, in principle, they can distort all the effects and conclusions.

We are indebted to B. Z. Kopeliovitsh, V. A. Morozov, V. S. Stavinski, A. Sandacz,
M. Staszel and especially to L. I Lapiduss and V. A. Nikitin for discussions and critical
remarks. We thank also T. Zlatanova for a great help in the calculations. One of us (O. D.)
cxpresses his deep gratitude to the Warsaw University where the final part of this work
was done, for hospitality and financial support.

5 More detailed discussion on this is given in Ref. [41].
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