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The paper discusses dynamical properties of the Jacobi field, i.e. the field of perturba-
tions, in general, classical field theories. Propositions about the connection between the Jacobi
equations and the principle of stationary action in field theories are formulated and then
some first integrals of these equations derived. Their comparison with first integrals of the
Lagrange equations suggests the necessity of a genera'ization of the concept of the Jacobi
field. Such a generalization leads to an infinite set of fields which defines the relative
dynamics of a given field theory. In concluding remarks attention is paid to the possible
meaning of the relative dynamics for the quantization of nonlinear field theories, and in
particular of general relativity.

1. The Jacobi fields

We shall here consider a general, dynamical theory of fields 9*(x*) on an n-dimensional
manifold M covered with domains of a coordinate system {x"}; x = 1,2, ...,n The
manifold M may be, in particular, a four dimensional Riemannian or Minkowski space
(1 = 0,1,2,3), as well as the one dimensional time axis (¢ = 0) of classical mechanics.
The index 4~ = 1.2. ... N) is a collective index representing collections of tensorial,
spinorial ect. indices ot appropriate fields of the classical field theory or of the generalized
coordinates of mechanics. We assume that the functions *(x*) admit continuous deriva-
tives of an order sufficiently high to make the here presented constructions feasible. De-

noting! v : = dy"*/ox*, we assume that in the considered theory an action functional of
the form

wly'] = £L(w", i, XM)dx (1.1)
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! The sign := means “equal by definition™.
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is given, with the Lagrangian® L being a sufficiently regular function of its arguments.
In the formula above the domain of integration Q is an n-dimensional region of the manifold
M. Its choice may depend on the particular properties of a specific theory under considera-
tion. In spacetime, for instance, it frequently is the region bounded by two spacelike
hypersurfaces, and in mechanics a finite time interval.

The stationary action principle: The variation of the action (1.1) dW = 0 for variations
Sy* arbitrary in the interior of the region Q, and vanishing on its boundary 0Q, leads,
obviously, to the dynamical equations

oW _ oL _d e _ 2
syt B oyt dx* oyl o )

being differential equations (partial for » > 1, and ordinary for » = 1) of the second
order for fields *(x*) (d/dx* denotes here the complete derivative with respect to x*).

Let us suppose that there is given a one-parametric family of solutions ¢ =*(x*, ¢)
of (1.2) which corresponds to a one-parametric family of initial conditions. We assume the
functions y* to be differentiable with respect to the parameter ¢. Let us distinguish in the
considered family the field p*(x*): = y*(x*, 0), and define on M a new field o"(x*)
:=0y*/0e|,—o. From the Egs(1.2), which are now, after the substitution of y*=y*(x*, ¢),
fulfilled identically, we get an identity® for the just defined field o*(x"),

3 A & {oL , oL d ¢ foL , oL
— o) = 30t 5 0, ) =\ t % %) 1.3
51,UA01/JB (‘ ) Elp” (61/)8 < ’:1[)5 Ko dX'u 6’1/);: hwy = 6'1/)5 Y ( )

in which all coefficients are evaluated for the distinguished solution %*(x*). The differential
operator 82 W/dy"oy®(-) appearing in (1.3), is called here the second variational derivative
of the functional (1.1). The details of its intrinsic definition are stated in [1]. The differentia-
tion in (1.3) should be performed under the assumption that ¢ is independent of y*,
and does only depend on x*.

When a field o#(x*), fulfilling (1.3), is already given, we may forget about its construction
by means of a family of solutions of the Lagrange equations (1.2), and accept as the starting
point the relation (1.3) treated now as a set of differential equations for ¢*(x*). In more
precise terms, to any fixed solution y*(x*) of (1.2) there corresponds a field equation
for o*(x"), the Eq. (1.3), and its coefficients evaluated for the fixed w(x*) are given
functions of x*. According to the terminology of variational calculus, the Eq. (1.3) is
then called the Jacobi equation of the variational problem for the action (1.1) and the field
o*(x*) — the Jacobi field corresponding to the chosen solution w*(x*) of the Lagrange
equations. The field o*(x*) is, for a given y*(x"), defined by the Eq. (1.3) with some subsid-
iary conditions imposed which usually amount to initial or boundary conditions. The

2 The term “‘Lagrangian” is used in this article also as a synonym of the normally used “density of
the Lagrange function™.

3 The summation convention with respect to repeated indices of all kinds is accepted all over this
article.
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freedom of choice of such subsidiary conditions now corresponds to the possibility of
defining the field o*(x*) by means of several one-parametric families yp*(x*, &) (which
for ¢ = 0 reduce always to the same v*(x")) according to the first of just described
ways of defining this field.

In mechanics the Jacobi field may be interpreted as a vector field along a given
trajectory of the Lagrange equations. It describes, in the first approximation, the relative
motion along a trajectory adjacent to the given one. The Jacobi field of geodesics in
a Riemannian space is called the geodesic deviation [2]. In general relativity the geodesic
deviation is a useful tool for the physical interpretation of curvature [3-8]; it is also the
basic quantity in the theory of gravitational waves detectors of the type used by Weber {9,
10]. In the field theory the Jacobi field describes, in the first approximation, the perturbations
of the field caused by perturbations of the imposed subsidiary conditions. In this context
one should mention that the Eq. (1.3} as a homogeneous one will, in general, admit a non-
vanishing solution only for the nonhomogeneous conditions imposed. Physically, it means,
for instance, that the vanishing of the Jacobi field and its gradients at an initial instant
of time implies their vanishing for ever.

From the mathematical point of view, the set of all solutions of the Lagrange equations
(1.3), endowed with an appropriate topology, forms a differentiable manifold ¥, in
general infinitely many dimensional, modelled on the Banach space. The set of all linear
combinations of the Jacobi fields corresponding to a solution »” is then the tangent space
to the manifold ¥ at p”.

The Jacobi fields were usually discussed in connection with the problem of stability
of solutions of (1.2) and with the formulation of sufficient conditions for the variational
problem of the action functional (1.1). Here these properties of the Jacobi fields, belonging
rather to global problems of mathematical analysis, will not be touched at all. This paper
will, instead, concentrate on some local, but dynamical properties of these fields and of
some other fields which form their natural generalization and are defined in the third
section.

2. The Jacobi equations and the variational principle

One may expect that the Jacobi equation (1.3), being closely linked with the Lagrange
equations, will also be related to the variational principle for the action (1.1). Such a rela-
tion forms, among others, the subject of the following three propositions.

Proposition 2.1. Let p* be a solution of the Lagrange equations (1.2), and its
variation §y* a solution of the Jacobi equation (1.3)

3w
———(69%) =0,
S5 wA 3 1pls( v)
then W+ 18%W, the variation of the action (1.1) up to the second variation, is equal
to a surface integral over the boundary 6Q of the domain Q of integration in (1.1) (or,
differently speaking, d W+ 4 3*W vanishes modulo the “‘surface terms”).
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The proof of this proposition directly follows from the following expression for the
variation of the action W up to the second variation

o W *w W
SW+16°W = — +3 5 0y7) |yt 41— 8%y | dx

Nojs

oy oy oy oy ot
0 P oL ‘
+ {dSn, oyt —— — (L+3oL)+1 s 2.0
C’Pu py

cQ

where n, is a unit covariant vector normal to the boundary ¢ of the domain Q and

The proposition above or statements equivalent to it were known since the beginning
of variational calculus. One ought to mention that from the vanishing of the second variation
modulo surface terms it is not possible to deduce that dy* must fulfil the Jacobi equation,
since to integrals of the form [SyF[dyldx (F[8y] is a functional of dy) one cannot apply
the Lagrange-Haar lemma: the vanishing of the integral does not imply here the vanishing
of F[v]. The Jacobi equation is, however, related to a stationary action principle with
a Lagrangian being the second differential of the Lagrangian in (1.1). A more precise
statement of that fact is contained in the following proposition.

Proposition 2.2. (The accessoric action principle.) Let y* be a given solution of
the Lagrange equations (1.2) and let

~2 ~2 "2
¢°L 0L L
L(e*, 0, x7) : =%[<. 4 B) QA9B+2(ﬁ> 0"95+(—4‘T7> Of;f]’ (2.2)
cy oy /g oy Clpﬂ v (M/)uclp

where the derivatives on the right hand side are evaluated for y* = p*(x*), i.e. for a given
L(y?, w2, x°) are given functions of x*. Then the Euler-Lagrange equations of the varia-
tional principle

6§ L(o% 0, x)dx =0 (2.3)
2

under the condition 0% = 0 for x € 6Q turn out to be the Jacobi equations
0 q

W,
—— (@ =0.
Sy (9]

The proof of this proposition is based on the standard procedure used in variational
calculus and on the form of (1.3). The thesis of Proposition 2.2 is ascribed to Carathéodory
[11] who also introduced the term “‘accessoric variational problem’™ meant as additional
to the main or original variational problem for the action (1.1). The accessoric variational
problem for the geodesic line in a Riemannian space was formulated in a nonpublished
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work of Plebafiski [12]. From the point of view of certain aesthetics of the theory, the
accessoric Lagrangian may appear to be constructed ad hoc, being not grounded before
its Euler-Lagrange equations. The relation between the variational principle for the action
(1.1) and the Jacobi equations seems to find a more perfect form in the next proposition.

Proposition 2.3. (The action principle for mappings of fields.) Let ¥ be a set of
all sufficiently regular fields v on a region © of the manifold M. Let us consider an
arbitrary, infinitesimal mapping of ¥ onto itself, described by a generator Aw4, or in
other words, a mapping y4(x*) > pA(x*), for which there is such an & € R, and such
a function O(x", ¢g) that

P = (") + Ayt (xF)e+ O(x", €) 2.4

and lim &10(x* &) = 0 for any x € Q, i.e. O(x", &) tends to zero, for ¢ - 0, faster than e.

-0

1) The necessary and sufficient condition that the mapping (2.4), characterized by
a generator Ay*, transforms the fields y#(x*) fulfilling the stationary action principle
for W of the form (1.1), into fields »*(x*) fulfilling the same principle up to terms which
tend to zero, for & — 0, faster than &, reads as

SWOLy; 4y} = 0, 2.5)

where

oL oL
WOLyp'; dy?] 2 = J(Ow o ") dx (2.6)
(o]

"

is the first Fréchet differential of the functional (1.1), and the variation in (2.5) is performed
for variations being arbitrary in the interior of @ and fulfilling on its boundary 0Q the
condition

dy* =0 for xedQ. 2.7

The variables Ay“ are not subjected to variations in (2.5) at all.

2) The functional (2.6), depending on two fields*: y* and Ay*, is an action functional
of a new variational principle of the form (2.5), but now the variation is performed for
variations 6y and d4y* arbitrary in the interior of Q and satisfying on its boundary the
conditions

dpt =0, d4y* =0 for xedQ. (2.72)
- The Euler-Lagrange equations of this action principle are:

(i) the original Lagrange equations (1.2), when (2.6) is being varied with respect
to Ayp*;

41t should be stressed that Azp is here an entity by itself — a completely new field on M, wholly in-
dependent of v, The notation A'/’u is used as abbreviation of o4y /ax“ The symbol 4 alone has in this
paper no operational meamng and thus such symbols as e.g. 4 oy Ajext will here not occur.
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(ii) the Jacobi equations

52W B .
my‘)g (4y”) =0, (2.8)
when one varies (2.6) with respect to p.

The first part of this proposition directly follows from the definition of the differential
W®[p4; Ap*] of a functional. According to this definition

W] = Wy ]+ WOy 49" ]+ (),

under the condition for the remainder: r(g)e=! — 0 for ¢ — 0. Varying with respect to
p* both sides of the equation above we get, up to e'r(e), the thesis (2.5).

The proof of the second part uses the standard procedure of variational calculus.
For the variation 6 W™ [p#; Ap”] with respect to dy* and S4y* we get

2 2

8L L
Wt Ap?] = || ——— Sy dp®+ ——— (S AP+ 5984yt
[v*; 4y"] J prapR OV Ay awAawf(w ¥y + 0y, Ap?)

O*L oL
+ g Sypdyl+ —, Syt +
aypays SO gy 0¥

64 zp;{l dx

~ A
oy,

ooy

0 oL oL oL
+ | dSn [51/)’4 (— Ay® + ——~Azpf) +84p* ]
f g oy \oy” oy

8w W
= J\[TA—:“B (A 1/)8)(51[)4 + - A o4 I{JA] dx
2

and hence, because of the Haar lemma (now dy# and 64y“ being independent) and the
condition (2.7a), the thesis follows.

One should stress that there is an essential difference between the formulations of
Propositions 2.2 and 2.3. In the variational principle (2.3), in Proposition 2.2, the variables
subjected to variations are the fields p*(x*) the Lagrange field 94(x*) being fixed. In
Proposition 2.3, however, the variational principle (2.5) occurs, and there the dynamical
variables are the original fields as well as the Jacobi field. Moreover this variational
principle is not a result of any guess-work, but due to the first part of Proposition 2.3
a logical extension of the original principle based on the action functional (1.1).

The difference of formulations of these propositions leads to two various interpretations
of the Jacobi field. Both of these interpretations are of course, like both of the formulations,
equivalent to each other.

Proposition 2.2 allows to treat the Jacobi field, for a fixed solution p“(x*) of the
Lagrange cquations, as an independent dynamical system, the degrees of freedom of
which are described by the components of the object o#(x*), and its Lagrangian is given
by (2.2). The direct consequence of this proposition is thus the applicability of all construc-
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tions and theorems of analytical dynamics to the Jacobi field. Among others, for instance,
one may pass from the accessoric Lagrange formalism, defined by (2.2), to the accessoric
Hamiltonian formalism. The particular form (2.2) of the Lagrangian assures that the
Hesse determinants of the original theory and of the accessoric one are equal to each other,

dt( L ) dt( 523) 29
et| ——s; ) = de . .
cyooye dpad0s

Hence it follows that the accessoric Hamiltonian formalism will be singular if and only if
the original formalism is singular.

Another corollary from Proposition 2.2, also connected with the particular form (2.2)
of the Lagrangian, is the relation

A2 A 2o (2.10)
dx*\ ogj ~

which follows from the Jacobi equations (1.3) multiplied by o# and from the definition
of the Lagrangian (2.2). Besides the relations relying on the particular form (2.2) of the
Lagrangian, there are also relations of quite a general nature the proof of which refers
only to the existence of the accessoric Lagrangian. One of the most important relations
of this kind reads as

4 g 92 @.11)
dx* " ox’’ ’
where
gu. =% — Pt (2.12)
v BQ;: \V

is the canonical energy momentum tensor for the Lagrangian (2.2). Since % is a quadratic
form in the variables o4 and g,f with coefficients depending, in general, on x*, the
tensor 7 & does not fulfil any conservation law, even if such a law is held for the canonical
energy momentum tensor ., of the original problem defined by the Lagrangian L.

In Proposition 2.2, instead, the degrees of freedom in the variational principle are
defined by both the fields p“(x*) and 4y*(x*). The Jacobi equations form thus a certain
additional aspect of the dynamics of the fields p#(x*). According to such an approach
the dynamics based on the Lagrange equations (1.2) should not be discussed separately
from the accessoric one, defined by the Lagrangian (2.2), but a sort of union of both
of them is to be considered. And indeed, taking for the starting point the set of the La-
grange (1.2) and the Jacobi (1.3) equations one can derive quite a few identities containing
both Lagrangians: L(y*, v}, x°) and #(¢*, o/, x°). Here is one of the more important
relations of this kind

d[ , oL 0% oL oL
— | ot + v — o +od —
dX"[Q oy v oo ( oyt 2 6%‘)]

¢’L oL
=~ axvaw,d ~A 6x”61p" ga’ (2.13)
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which one gets after multiplying (1.3) by % and performing some algebraic operations
based on (1.2) and the definition (2.2); cf. Appendix A. From the relation (2.13) the next
proposition immediately follows.

Proposition 2.4. If the Lagrangian L(yp*, zp;‘) defining the action (1.1) does not
explicitly depend on x*, i.e. if dL/0x" = 0, then the tensor

oL o0& } oL oL
= of ) + S -3} <QA P +0f 3 ,4) (2.14)
n R g

fulfils, for the solution yp“(x*) of the Lagrange equations (1.2) and the solutions o4(x")
of the Jacobi equations (1.3) corresponding to 4(x*), the conservation law
d

This conservation law may also be derived as a corollary of the generalized Noether
identity for the variational principle in Proposition 2.3. More details about it may be
found in [1].

An elementary example. The here introduced notions and relations will be followed
in the case of dynamics of a single material point in a potential field of forces in the Euclidean
space R®. The manifold M is then the one-dimensional time axis, i.e. x* = :¢, and
p(x*) = : x(t) (a = 1, 2, 3) is the function which maps M into R®. The Lagrange func-
tion is equal to

L(x% %% = § mx* = V(x), (2.16)

where x? = X“%° (the summation convention does still apply) and the potential V(x)
is a given function of x“. The equations of motion are then, of course, the Newton equations
. ov

mx® = — ——. (2.17)
ox
For the considered system JL/ét = 0, and the law of conservation of energy
E = 1 mx*+ V(x) = const (2.18)

is fulfilled. One defines the Jacobi field p#(x*) =:r%(t), for a fixed solution x* = x%(¢)
of the equations of motion (2.17), as a vector field given along a curve y which represents
the motion x* = x“(¢) in the space R® x M and is therefore “a world line” of the considered
material point. The accessoric Lagrangian (2.2) has here the form
2
L H =1mr?—1 (%) rr®, (2.19)
ox"0x" ],

aa

where 72 = 7/, and the Jacobi equations (1.3) amount to the equations

. ( v ) .
mr® = — r (2.20)

ax‘ox),
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One should emphasize that the second partial derivative of ¥ in(2.19)and (2.20), asevaluated
along a given curve y, is a given function of time. From the formal point of view, the
Lagrangian (2.19) is that of an anisotropic oscillator whose “tensorial restoring force”
is a given function of time. The Jacobi vector describes in a linear approximation the
motion of adjacent particles, also having the mass m, with respect to a given particle
with the motion described by the fixed solution x* = x°(t). This interpretation directly
follows from the first definition of the Jacobi vector quoted in Section 1.

The identity (2.11) takes for a general Lagrange function in mechanics the form

(e ., % .
at\ e ! = (2.21)

and for the accessoric Lagrangian (2.19) it yields

d 5, OV, >V
— _% mr +7‘ = rr = % — X, (222)
t OX UX COXNTOX

From here then easily follows that the expression

~2
G:=3mrP+t —— ", (2.23)
Cx"Ox

formally being the energy of the system with the Lagrangian (2.19) is not in general
conserved. Thus, the quantity (2.23) cannot be the relative energy of two adjacent particles,
since, as we know, the “absolute” energy of each of them is being conserved. This apparent
inconsistency is due to the fact that the Jacobi vector describes the relative dynamics of
two adjacent particles in the linear approximation only. Therefore, one cannot, in general,
identify dynamical functions of the Lagrangian (2.19) with corresponding functions char-
acterizing the relative motion of two adjacent particles. In the next section we shall
define a collection of quantities which together with the Jacobi vector characterize the
relative dynamics of neighbouring particles, and then it will turn out that the quadratic
form (2.23) may be completed by some additional terms to a conserved quantity. An
analogous construction for the geodesic deviation in general relativity has been done in
[7] and [8].

Since in our case the original Lagrangian (2.16) does not depend on time, there
exists a first integral of the form (2.14). In mechanics, for a general Lagrangian L(x° X%
with a corresponding accessoric Lagrangian £(r“, % ), instead of (2.14) there holds

.o 0F . OL

T= X 0 =1,
OF 0x

(2.24)

Hence for the particular Lagrangians (2.16) and (2.19) we obtain

oV
T = mrox" 4 6 re. (2.25)

a
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To get an interpretation of the conserved quantity above and similarly of the general
quantity (2.14), we are introducing a one-parametric family of solutions x° = x(t, ¢)
of the equations (2.17). Then the constant of energy £ = E(¢) is a function of the
parameter ¢ and applying the first of the considered definitions of the Jacobi field we see
that © = (dE/dg), -4, i.€. ¢ is the linear approximation of the relative energy of a particle
moving along x* = x(z, ¢) with respect to a particle whose motion is described by
x* = x%(1,0). This energy is a linear function of the quantities r* and #* characterizing
the rclative motion. Taking into account the equations of motion (2.17) one can pres-
ent relations (2.25) in the form
o pege e (2.26)
m
The constancy of 7/m has thus a clear kinematical meaning. Its analogy with the constancy
of the scalar product #x* in the case of the geodesic deviation is also apparent.

The unified Lagrangian LY, o, X%, 79 corresponding to the action (2.6) is here
of the form

L%, r°, %% ) = mx° — ov .

ox*

3. The Jacobi fields of higher order

The before considered definition of the Jacobi fields corresponding to given Lagrange
fields may in turn be applied to the Jacobi fields themselves. Returning to the first of the
discussed ways of defining these fields let us consider a one-parametric family of solutions
pt = pA(x*, &) of the Eq (1.2), corresponding to a one-parametric family of initial
conditions. To every solution of such a family there is related a certain Jacobi equation (1.3).
In other words, we have given a family of Jacobi equations in which the coefficients are
functions of the parameter ¢. Suppose that p#(x*, &) is a solution of this family of Jacobi
equations and that this solution corresponds to a family of initial conditions parametrized
by & too. Let us assume that p#(x*, &) are functions at least of class C' with respect to e.

A
CAL)] -

68 =0
the Egs (1.3), taking into account that the coefficients in them as well as their solution de-
pend on g, we get as the result of differentiation with respect to ¢ the identity

Now we may define on the manifold M a new field p(h(x"): =

W 8w
W (0%)) = — W&F (0% 09). 3.0

The operator 5*W/ow4dyPoy (-, -) standing above is called the third variational derivative

of the action (1.1). Its value on arbitrary, but, of course, appropriately regular fields g®(x*)

and x(x") is defined as
3w

B _Cy . ¢ o B..C d o0 ). B. .C
— 15 c (¥, = — L X )= —= L B 3.2
PR (@ 1) e ey 3 P [¢" 2] (32

-~



315

where
a2 2 A2
0°L 0°L ¢*L
Jig) — . B+ Bye. 3.3
[o% 2] = P ¥ "+ pPagt (%15 +x°9%) ToiayE i (3.3)

The formula (3.2) may, for our present purposes, be treated as the definition of the third
variational derivative; its intrinsic definition is given in [1]. The derivatives of L which
do appear in (3.1) through the operators of the second and third variational derivatives
are evaluated for a fixed field p#(x*): = p*(x*, &)},-, and the operator on the right-
-hand side of (3.1) acts on a fixed Jacobi field g#(x*): = o#(x", &)l,-0-

Similarly like in Section 1, when the fields yp“(x*) and o*(x*) fulfilling the Egs (1.2)
and (1.3) are already given, the Eq. (3.1), with coefficients evaluated for these fields, is
accepted to define the field gy, whereas the primary construction of the field g, by
means of families of solutions of the Eqs (1.2) and (1.3) is left aside. The Eq. (3.1), pro-
vided y* and ¢ are given, is a linear partial differential equation for o{%,(x"), and com-
pleted by appropriate subsidiary conditions will always uniquely define the unknown field,
for L fulfilling the necessary regularity conditions.

This definition of the field gf;),, based on the differential Eq. (3.1), as well as the
corresponding definition of the field o before, does not rely on the regularity of solutions
with respect to the parameter ¢, but on the regularity of the Lagrangian L alone, which
is less troublesome in applications.

The Eq. (3.1), in contradistinction to (1.3), is not homogeneous. Therefore, even
if one imposes on the field 0(2) homogeneous initial conditions, i.e. conditions demanding
the field and its time derivative to vanish initially, provided the first Jacobi field will not
vanish, there will develop as a result of the time evolution a nonvanishing field (%,

The field o5 (x*) exhibits a few properties similar to those described in the propositions
of Section 2. Thus, the following propositions will take place.

Proposition 3.1. Let »*(x*) be a solution of the Lagrange equations (1.2), its
first variation dy# a solution of the Jacobi equation (1.3) and the second variation 62y

1
a solution of the Eq. (3.1), then W+ 5—52 W+ — 3 — 32 W, the variation of the action

(1.1) up to the third variation, is equal to a surface integral over the boundary 6Q of the
domain of integration @ in (I.1).

Proposition 3.2. (The second accessoric action principle). Let $*(x*) be a given
solution of the Lagrange equations (1.2), g#(x") a solution of the Jacobi equations (1.3),
and let

A A a aZL 62L A B
L0y 0w X ) 1 =1 01/"“ B 0(2)9(2)"‘ 'a',,"l)“—,.awe - 0(2)0(2)v

o’L swo . ,
+ (6’(/}'{’\ B).. ~(2)}l9(2)v+0(2)i] 45 Béwc (\B, gc (34)

where the derivatives on the right hand side are evaluated for yp* = P4(x*), i. e. for a
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given L(y*, v}, x%) are fixed functions of x”. Then the Euler-Lagrange equations of the
variational principle

5!]; 3(2)(9242)’ 9(42),4, x%)dx =0

under the condition
S0, =0 for xedQ (3.5)
turn out to be the Egs (3.1).

Proposition 3.3. (The action principle for mappings of fields). Let ¥ be a set of
all sufficiently regular fields on a region Q of the manifold M. Let us consider a mapping
of ¥ onto itself, under which p*(x*) - ¢*(x*), of the form

P = p(x*)+Adp*(x"e+ ) A7y ' (xM)E® +O(x", €7), (3.6)
where ¢ is a real parameter, 4y*(x*) and 4%y*(x*) two independent generators of the
considered mapping, and O(x*, ¢?) — O faster then ¢*. We additionally assume that the
generator Ay”*(x*) is a given solution of the Jacobi equation (1.3). Then

1) The necessary and sufficient condition that the mapping (3.6) transforms the fields

y*(x*) fulfilling the stationary action principle for W of the form (1.1) into the fields
PA(x*) fulfilling the same principle up to terms which tend to zero faster than &2 reads as

5(W(!)[?pd; AEWA]_*_PV(Z){QPA; A'I/)A, AQI)A]) — 0’ (3.7)
where W) is the functional (2.6) and
WOLy's o 110 = [ LV[e"; 2 Jdx (3.8)
Q

(cf (3.3)) is the second differential of the functional (1.1). The variation in (3.7) is per-
formed for variations dy* being arbitrary in the interior of Q and fulfilling on its boundary
éQ the condition

Spt(x*) =0 for xedQ. (3.9)
The variables Ay*(x") and A%?yp*(x"*) are not subjected to variations in (3.7) at all.
2) The functional W®[y4, A2+ WP [p*; Ap?, Ayp*] is an action functional of
a new variational principle of the form (3.7) in which the variation must now be performed
with respect to all the fields: y*, Ay* and 42y treated as independent dynamical variables.
The variations of these variables are arbitrary in the interior of Q and on its boundary
¢€2 subjected to conditions

Syt =0, ddyp*=0, 479" =0 Tfor xedQ. (3.9a)
The Euler-Lagrange equations of this action principle are:
(/) the original Lagrange equations (1.2), when the variation in (3.7) is taken with
respect to A4%p?;
(i7) the Jacobi equations (2.8), when one varies® with respect to dy*;

5 Let us observe that if one artificially disregards in the new action principle * anddzzp” as dynamical
variables, leaving -1 as the only ones, the new principle is turning into the accessoric action principle (2.3).
This fact demonstrates once again the factitiousness of the last principle.
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(iii) the Eqs (3.1) for A%¢®
52”/ 23
Sytop? (4*y") = —

————— (dy®, 49°), (3.10
5wAay)BawC( ’P QP) \3 )

when the new action is being varied with respect to y*.

Among the relations which may be derived from the set of Eqs (1.2), (1.3) and (3.1)
the following identity being a generalization of (2.13) deserves for particular attention:

d . oL 0% . oL cL oF
v + yv ~ -4 bl‘\f + o +7 d—”+ v
dx [% 02) Pyl - P 9(2) oyt 9(2) ay,a v Fwy

(3‘(/);: U2y u
aL ’L oL ’L
e By "2 o ool
%ﬁxvﬁtp" SO axopd “P axvoptoyp? g ox oyptop? ~ e
L
— S A e %es (3.11)
ox*oyloys
where the notation
0L é°L 0°L o°L
—— 556 00 H2 e 0%l + i oh oS
oy, Sy oyPoy” oy oy oy dpgopiops

is accepted. The identity (3.11) may be derived as a result of multiplication of (3.1) by
p2 and of an algebraic procedure given in the Appendix B, based on the Egs (1.2) and
the identity (2.11). An immediate consequence of this is the next proposition.

Proposition 3.4. If the Lagrangian L(y*, zp;‘) defining the action (1.1) does not
depend explicitly on the variables x* 1. e. if dL/0x" = 0, then the tensor

oL 0% 2,
i=2%oly —— 1wl ——
) O'P: OQ?ZW
167 ol oL + o8 oL + T E ot 0z (3.12)
v 9(2) a?PA Q(Z)a OwaA v (2% 61/): .

fulfils, for solutions y*(x*) of the Lagrange equations (1.2), solutions o*(x*) of the cor-
responding to them Jacobi equations (1.3), and solutions gfz)(x“) of the Eqs (3.1), the conser-
vation law

d
9 = 0. (3.13)
dx*

The last proposition, similarly to Proposition 2.4, may be derived as a corollary of
the generalized Noether identity. The conservation law (3.13) could also be interpreted
as another form of the relation (2.11) in which the term 0.9 /0x* has been expressed as
the complete divergence, which was enabled by introducing a new quantity gfz)(x“).

Now we shall discuss a particular case of the conservation law (3.13) in the before
considered elementary example.
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The elementary example (continued). The second accessoric Lagrangian & ,,, cor-
responding to the Lagrangian (2.16), has the form

& (a ] ) % <2 1 an a b 63V a b.c (3 14)
@UepTap ) =2mrogy=3l o5 ) 'of@o —\ sssac) Tl ¥ .
oxéx’ J, 0x"0x"0x/,

in which rf;, = ri3(?) is, besides the field r* = r%(t) defined in Section 2, a new vector
field along the curve y representing the motion x* = x“(r) in the space R*>x M. Thus,
the field r(;, now corresponds to the field sz)(x“) from the general theory. The stationary
action principle for the Lagrangian leads to the following equations for r; (1)

vy, BV N .
mr ==l )V =\ T rr.
@ axoxt ), @ \oxox*o° ],

In these equations the partial derivatives of the function V are evaluated along the curve
y and r* = r(r) is a fixed solution of the Jacobi equation (2.20). In mechanics, for general
Lagrangians L, £, and #,, the tensor (3.12) will reduce to a scalar

822, oL 0
=132 140 L G+x——, 3.16
1 2@ Ty ¥ o (3.16)

where G is defined by (2.23). For the particular Lagrangians (2.16), (2.19) and (3.14) it
reads as
2

3 =1m?+} A 43 mEGR >y, (3.17)
axaaxb , 2) 2) Ox® ,

Because of Proposition 3.4 the quantity above is conserved, as the Lagrangian (2.16) does
not explicitly depend on time. Comparing (3.17) and (2.23) we may see that 3 differs
from G in terms linear with respect to r(5, and 7{;,. Taking into account that the conserva-
tion of 3 follows from the time independence of the Lagrangian L, and also that after
one rejects the last two terms in (3.17) 3 passes into G, we can interpret the quantity (3.17)
as being proportional to the relative energy of two particles with equal masses, moving
correspondingly along the trajectories y5: x4 = x°¢, 0) and y,: x® = x“(t, ¢) of the Eqs (2.17).
One can easily convince oneself also directly that such an interpretation is reasonable.
Therefore one should return to the definition of fields 7(¢) and r(,)(¢) according to which
they are correspondingly equal to the first or the second derivative with respect to the
parameter of a one-parametric family of motions x* = x%, ¢) being solutions of (2.17).
The constant of energy E(¢) is then also a function of the parameter ¢ and instead of (2.18)
we have

E(e) = L mx*(t, &)+ V(x(t, £)). (3.18)
Hence making use of the Taylor formula and the definitions:
. ox° d . 0*x°
= an Pyt = —5 ,
' 68 =0 2 652 =0
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we get
E(e) = E(0)+ 1|, 08+ 8,08 + 2(e?). (3.19)

By an appropriate choice of initial conditions imposed on r* and 7%(e. g. by taking at the
initial instant of time i perpendicularly to x* and r¢ to X¥%), we can, according to (2.26),
achieve the vanishing of 7. Then, the quantity 9&* will be, up to terms of the order &,
equal to the relative energy E(e)—E(0).

This discussion may be almost repeated for the energy momentum tensor in the general
theory.

4. The possible physical meaning of the Jacobi fields

In mechanics the Jacobi field r“(z) describes the relative motion of particles infinitesi-
mally close to the given one. The Jacobi equations are, as we have seen, dynamical equa-
tions characterized by the Lagrangian (2.2). The dynamical functions, however, constructed
by means of this Lagrangian according to the formalism of analytical mechanics do not
characterize, as it follows from the example with energy, the dynamics of the relative
motion of particles. In the case of energy, i. e. of dynamical function being a quadratic
form in relative positions and velocities, it has been sufficient to complete the notion of
the Jacobi field by the field r(;), defined by the Eqs (3.15), to derive a dynamical function
3 of the variables x“, X*, r*, 9, r(;, (3, which characterizes in an appropriate approxima-
tion the relative energy of a physical situation. Similarly to the procedure of defining the
fields r® and r{,), one can define further fields r{y), first as the k-th derivative with respect
to the parameter and then by an appropriate equation of motion in which all previous
fields: x* r% r(s), ..., F{x—1) will enter as given functions of ¢. These new fields are needed
in cases where dynamical functions more complex than a simple quadratic form and the
conservation laws combined with them are under consideration. Also in cases of dynamical
functions which are quadratic forms like energy, all of these fields, up to r(, including,
will define new dynamical functions approximating the given ones with accuracy of the
order . Thus, a single field r(v alone, despite that it formally constitutes a dynamical
system, does not desciibe the dynamics of the relative motion of neighbouring particles.
Dynamics of such a kind is, however, determined by the infinite collection of fields rg,
(k =0, 1,..), where rioy = x“ and r{;, = r°. The basis of thus understood relative dyna-
mics is formed by the principle of stationary action together with the implied by it varia-
tional principles which are contained in Propositions 2.3 and 3.3 and in their appropriate
generalization for all fields r(;,. In most applications, however, only the knowledge of
a finite sequence of consecutive fields r{, will be essential. The number of fields in such
a sequence will, in general, depend upon what are the dynamical functions which are
interesting for the given purpose. Very often, the sequence in question will consists of
those fields r(,, which are necessary to define the considered dynamical function in the
lowest order of ¢. One of the applications of the relative dynamics consists in the analysis
of motion of test particles in the gravitational field in general relativity. To that question

is devoted a separate paper [8]; introductory elements of such an analysis are also con-
tained in [7].
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In the general field theory one also introduces a sequence of fields g(‘k) defining each
field first as the k-th derivative with respect to the parameter and then by postulating
appropriate field equations in which, in general, all the before defined fields y*, o4, 9'(42), vees
Q&_l), enter as given solutions of the field equations corresponding to all values of the
index smaller than k. The interpretation of the infinite collection of all fields g;‘k) is here,
of course, different than in mechanics. In case the solution of the equations is analytic
with respect to a parameter introduced by initial conditions, the collection of all fields
@(}‘) defines a perturbation of the field y* caused by the perturbation of initial conditions.
In general, the sequence of fields Q'&) provides certain characteristic of the “‘dynamical
surrounding” of a state of the field determined by y*. By analogy to mechanics, also in
the general case of a collection of fields gﬁ() we shall be saying that it determines the
relative dynamics of a given field theory characterized by either the field equations (1.2)
or the action (1.1).

Quite an important question arises here: for what field theories all the equations
for the fields Q&) are identical to the Lagrange equations (1.2) for the field y4? It easily
may be verified that the following proposition is true:

Proposition 4.1. It is necessary and sufficient for the Lagrange equations (1.2)
to be identical with all the equations for the fields QZ‘,‘) that the field theory characterized
by the action (1.1) is linear. '

Differently speaking, in linear field theory the “dynamical surrounding” of an arbi-
trary state does not depend on that state and is such as the surrounding of the state of
vacuum. Thus, any linear theory is characterized by a sui generis degeneration consisting
in dynamical indistinguishability of the fields v and 93(). It implies, among others, that
to a procedure worked out for the dynamics of the fields ¢ in a linear theory there does not
necessarily correspond an analogous procedure formulated solely for the fields y* of
a nonlinear theory since an adequate generalization of such a procedure might include
the fields gﬁc) as well. '

This conclusion may, in particular, apply to the procedure of quantization of a field
theory. The quantization of linear field theories, mainly of electrodynamics, leads to
microscopic theories which are ideally confirmed by experiment. This success provides
the stimulus for numerous attemps of quantization of nonlinear field theories, and particula-
rly of the Einsteinian theory of gravitation. According to the generally accepted convic-
tion a procedure of quantization, e. g. the so-called canonical quantization, is closely
linked to the dynamics of fields. From the point of view of the general dynamical structure
of only the fields * themselves, however, the difference between a linear and a nonlinear
theory might not appear essential, and therefore the majority of attemps of quantization
of nonlinear theories consists in possibly faithful imitation, on the level of the fields y4,
of the metods worked out in linear theories. One cannot, however, eliminate the pos-
sibility that in nonlinear theories the quantization procedure applies to the whole col-
lection of fields 9%, ¢4, o(%), ..., 0{k ... Such a procedure would then pass, in the limit
of the linear theory, due to the dynamical indistinguishability of these fields, to a usual,
e. g. the canonical, quantization of dynamics of the fields %. It might be worthwile to
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undertake a more thorough analysis of such a possibility, and the present author intends
to return to it in the future. Now it would, anyhow, go beyond the classical field theory
being the subject of this paper.

Another possibility, which may here also be only mentioned, amounts to the supposi-
tion that the fields y* in any classical field theory are macroscopic fields, not subjected
to quantization at all, while the microscopic fields, those which should be quantized, are
only the fields gﬁ‘). Proposition 4.1 could then be regarded as a principle of indistinguish-
ability of classical macro- and microscopic fields in linear fields theories.

In the general theory of relativity, for instance, this latter point of view would mean
that the gravitational fields, being represented in a given reference frame by the components
of a tensor g,; which fulfils the Einstein equations

are macroscopic fields. Besides the fields g, (corresponding here to the fields y*), one
can introduce for every solution of the Eqgs (4.1), according to the propositions of the two
preceding sections, the fields (h,; (corresponding to the fields 93\.)) which are objects of
the relative dynamics connected with the action leading to the Egs (4.1). The first of these
fields, the Jacobi field (\h,; = : h,, fulfils the equations

% yaﬁ;eg - % Yag;oﬂ ™72 ’yﬁg;oa + % yog;ea - Rgaﬂa?“g +2l‘ Rag'fgﬂ + % Rﬂgyga
- % R'Yaﬁ +%ﬁgaﬁyQGRQo' = = 87[1‘.(15)’ (42)

where 7,50 = h,p—}g.h and 7,4, is characterizing the distribution of matter. The covariant
derivative denoted in (4.2) by a semicolon, the curvature tensor, and the operation of
rising indices are determined by means of the metric g,; being a solution of the Egs (4.1).
The Eqs (4.2), provided g, is a solution of (4.1), are invariant under a gauge group which
maps h,,© h,, = h,,+2y,,, by means of an arbitrary vector field y,. The existence of
such a gauge is a consequence of the generalization of the second Noether theorem stated
in [1], applied to the action of general relativity and of the invariance of this action under
a group determined by four arbitrary functions of x*. Choosing the gauge in such a way
that yaﬁ;” = 0, one can bring the Eq. (4.2) to a simpler form which in the particular case
of vacuum (R, = 0, Twgy = 0) may be reduced to the equation

haﬁ;QQ—ZReapdhde = 0 : (43)

The equation above was usually derived as an approximation of the Eq. (4.1)
determining a small correction to the metric tensor. In the particular case for g,
= 1,5, this equation was describing the waves of a weak gravitational field. Ac-
cording to the here formulated program, the Egs (4.2) and (4.3) are rigorous equa-
tions for a new field, the Jacobi field, connected with the relative dynamics of the field
g.p of general relativity. According to the second of above mentioned possibilities, the
field 4,; would be the first of an infinite sequence of gravitational microscopic fields sub-
jected to quantization. The hypothesis that the field of small perturbations of the field
g€, is a microscopic gravitational ficld is not a new one. Ii has been, among others, dis-
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cussed in a qualitative manner in [13]. This hypothesis forms also a basis of programs of
quantization of the gravitational field proposed by Lichnérowicz [14, 15] and by DeWitt
{16]. However, now the field h,; is not an accidental, additional element to the field g,
and is not “small”, but is an essential element of a whole dynamical scheme. Moreover,
in the limit of the linear theory this field is indistinguishable from the field g,,. The relative
dynamics is, however, defined not only by the field 4,4, but by the whole sequence of fields
ftap determined by equations which in contradistinction to (4.3) will contain source terms
depending upon all fields of the lower order. One should expect that the quantization
of gravitation is connected with the quantization of all fields h,, although in practical
applications not all of them must be necessary for the description of simple quantum
processes.

A difficulty of all such programs consists in a complete lack of any indications deter-
mining which of the fields should be taken as defining the “classical background™ of the
theory under consideration. It seems reasonable to admit only such fields g,; which would
be solutions of a well stated initial value problem, that means solutions which are analytic
with respect to parameters introduced by the initial data. Among several elements of
thus parametrized families the physically most important would probably be manifolds
with maximal symmetry.

The author wishes to thank to all his colleagues who contributed with their discus-
sions as this work has been developed. He is particularly indebted for several valuable
remarks to Professor Jerzy Plebanski and Professor Andrzej Trautman. His thanks are
also due to Professor Karl Erik Eriksson from the University of Géteborg for his hospi-
tality during a stay there in December 1973, where a part of this work has been formulated.

APPENDIX A
Multiplying the Eq. (1.3) by »{ we get

8w o (oL oL d @
pr y)Aa B( 8) = g‘: ~. A(aw B+ Olp 08) _"PA

oL , ¢L
50 + —50,)=0. (A.1)
oy dye

3

Adding and substracting from the left-hand side of the equation above the term
é ( oL oL )
A B B
Yw T4 e+ Qs
" oyp \ay® oy;

we may write it in the form

0 (oL oL 0 oL oL
e ) (e )

1

d 4 0 oL B cL
- S 0"+ —5 0,)| =0. A2
dx* I:‘P Eipﬁ (61,08 ¢ olpB e (A-2)
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Since according to (2.2)

¢ (L , ¢L 0L
s (o 2 ) = @
the last term in (A.2) may be expressed as
d{ , 0%
R ('Pv “0:;;() (A.4)

Taking into account that if differentiated the Lagrangian and its partial derivatives depend
on x* through the all arguments of the function L(y*(x"), y2(x*), x*), we can bring the
first two terms in (A.2) to the form

d oL  ,d oL L o, 'L

B B
— w3t B T T3 - Og+ A5
S odx® oyt “rdaxt Gyf  ox O‘z,uBl‘) oxv oyt a8 ° (A.3)
The first two terms in (A.5) are equal to
d s OL p OL s d ( OL
T v -~ B - ¥ + a v -»—_ ; A‘6
dx’ (Q (?z;)B) e oy® O Ux’ oyl (A-6)
and the last two terms in (A.6) may be, because of the Lagrange Eqs (1.2), expressed as
o d 0L s 4 OL

g AT
% 61/)ff P dx oy (A7

which, due to the commutativity of second derivatives, o), = gfﬂ, is equal to

d [, 6L> d ([, L s
o —5 ) — — 1o .
A \* 3y ) T ax*\® Gy (A8

Thus, all the terms in (A.2), except the last two in (A.5), have been collected in the form
of a complete divergence. The substitution to the Eq. (A.2) of all results of the operations
performed above leads to the relation (2.13).

APPENDIX B

Multiplying the left-hand side of (3.1) by v; and using the results of Appendix A
we get

sw d oL 0¥ oL oL
4« OV B = | ot <2’-5u(4~_+s L
Y 5,(/),151})3(9(2)) dx"[“m oy ¥ E v Qmaw,; 2o oyl

o’L o’L

- 5){;6—1;)2 22y~ W 9?2)0' (B.1)
The product of the right-hand side of (3.1) by %{ may be written in the form
*w 5 d
’ , =y, 2% » 27 B.2
wéAaBawc( ) waA()wd,,aA() (B.2)
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where the function &, given by the formula (2.2), is treated here as a function of all the
variables: p*, 5, 0*, ¢, and x*. This function should be distinguished from %|,, which
is the restriction of the complete function & to a given solution y“(x*). In Sections 1—4
of this work (except for the shorthand notation 0.9 /61/);‘ accepted in (3.11)) only the func-
tion |, was present, but it was there denoted by %, abusing the notation. The left-hand
side of (B.2) may be brought to the form

(2g)+ g QL)-2 — d o B.3
Wvu a A d /3 wv a‘lpu . ( . )

The derivative 0. |w/¢9xv may, according to its definition, be expressed through the partial
derivatives of the functions % and L:

0%\, 0¥ oL o’L &L

—¥ =y + +3 +2 o 0?03

o eyt TV opE T2 axapiay® ole"+2 o opiopE ¢ %
L B4
axvay)gaq)B QQQ ( . )

From the other side, the formula (2.11) is in the new notation to be written as

0L, d A g B.S
ax’  dx* (B.3)

Taking into account (B.4) and (B.5) we can rewrite the expression (B.3) in the form
0F L, . &L
) ee - 4~ B @ Qa
oy | ox"oytoy® oyl
o’L
A 0 0s:

d
— — | 2T 2y
dx" ox”c?tp

(B.6)

The expression (B.6) as being equal to the right-hand side of (3.1) multiplied by %2 must
be equal to the right-hand side of (B.1). Hence the relation (3.11) then follows.
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