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The forward photon-proton scattering amplitude has been evaluated for complex
energies. The question of the number and locations of zeros of this amplitude is considered.

We shall consider the photon-proton forward scattering amplitude, which has the
well-known spin structure [1]:

S(w) = fi{w)e e, +ic(e; x e,)f;, 1

where e, and e, are the polarization vectors of the initial and final photons, respectively
and o is the photon lab energy. The pion production threshold is w, = m,+m>/2my.
The corresponding total and forward differential cross sections are defined by the expres-
sions:

4z
ato!(w) = ; Imfl(cg)s (2)

do
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t=0

In this paper we confine ourselves to the consideration of the amplitude fi(w) as
the most interesting one because its imaginary part is directly connected via Eq. (2) with
an easily measurable quantity o,,,: total cross section of unpolarized photons on unpolar-
ized protons.

* On leave of absence from the Institute of Nuclear Physics, Moscow State University, USSR.
** Address: Instytut Fizyki Teoretycznej UW, Hoza 69, 00-681 Warszawa, Poland.

(333)



334

The amplitude fi{w) in the lowest order with respect to the electromagnetic inter-
actions has the following general properties:
(i) it is analytic in the complex w-plane with cuts (— o, — w,), (we, + o) along
the real axis;
(i1) it satisfies the crossing relation

fT(@) = fi(~o); )
{7if) it satisfies unitarity in the following sense:

Im f,(w) > 0. (5
We assume that

ifi{w) < const w?, w—> 4 oo. (6)

These properties allow one to formulate and to investigate various sum rules and
inequalities which should be satisfied by the amplitude f; (@) (see e. g. [2-5] and references
therein). Moreover, they allow one to write down [1] subtracted dispersion relations and
to calculate [6] the real part of the amplitude f;(w) on the basis of experimental data on
total cross sections. All the knowledge obtained from these investigations so far refers
to the behaviour of fi(w) at real values of w. No information exists on the forward
Compton scattering for complex values of w, contrary to the present knowledge of the
nEp forward scattering [7], K*p forward scattering [8] and pp, pp forward scattering
amplitudes {9] in the complex energy plane.

Of special interest for complex values of energy are the curves of constant phase or
phase contours [10-12}. In addition to indicating the location of zeros and poles of the
amplitude such contours are valuable for studying the general properties of the amplitude.
They can be used, for example, to set bounds on high-energy behaviour, test the predic-
tions of various models and indicate the location of resonances.

In this paper we evaluate f;(w) at complex values of energy on the basis of the once-
subtracted (at w = 0) dispersion relation:

2 I , ,
O
Ty w (OJ —w )

o

(7
where the subtraction constant f;(0) is well known. According to the low-energy theorem
[13, 14] one has

510) = —afmy, @®

where « = 1/137. We use exactly the same input on Im f(w) as used in Ref: [6].
The results (see Fig. 1) are presented in the form of curves of constant phase

m f{w
¢ = arctg ————— = const, 9
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and constant modulus
[fi(w)| = const, (10)

which are mutually orthogonal. These curves which describe the model-independent
behaviour of the forward Compton scattering amplitude in the complex energy plane
may be useful when studying some models of this amplitude.

In general, phase contours do not intercept except in the points corresponding to
the locations of poles or zeros of the amplitude. The amplitude f;(w) has no poles. If one
assumes that Re f(w,) < 0, then one can show [15] that the amplitude f;(w) has no zeros,
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Fig. 1. Curves of constant phase (solid lines) and of constant modulus (dashed lines, fermi units) in the
complex energy plane

either, in the complex w-plane. On the other hand, if we assume that Re fi(wo) > 0,
then similar arguments lead to the conclusion that the amplitude f,(w) has two zeros
which are located symmetrically on the real axis between the two cuts. Thus the number
of zeros in our case is determined solely by the sign of the real part at the threshold. The
only information about the sign of Re f;(w,) nowadays comes from the dispersion rela-
tion calculations, because no phase-shift analyses are available at low energies that could
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determine the sign of Re f(wy), i. e. the sign of the scattering length. The dispersion rela-
tion calculations [6] predict the negative sign for this quantity and a very small absolute
value, which is the consequence of the fact that Re f;(w) goes from positive to negative
values, i. e. has a zero just slightly above the threshold.

Hence, the amplitude f;(w) has no poles and no zeros. This, of course, is in agree-
ment with the results shown in Fig. 1: the phase contours do not intercept. The point
on the real axis, @ = 0.15 GeV, where the phase contours accumulate (they do not
cross there, only our scale is too small) is not really a zero but corresponds to the
point where only the real part of the amplitude has a zero. If in the future more accurate
experimental data on o, will be available at low energies and if this will change the
dispersion relation prediction for the sign of Re fi(w.) then, as mentioned, two zeros of
the amplitude f;(w) will appear on the real axis.

Knowledge about the number and locations of zeros of the amplitude is very important
if one wants to use sum rules and dispersion relations for the inverse amplitude or for the
logarithm of the amplitude (see e. g. [2, 16-20]). For example, provided that the amplitude
f1(w) has no poles and no zeros the dispersion relation for its logarithm can be written as
follows (see e. g. [18]):

P(w) = _PJ In |fy(0)ldo’ ‘ (11
\/co mo(w wz)

The dispersion relation (11) might be useful for investigating spin effects in yp forward
scattering. From Eq. (3) one can see that
1/2
) . (12)
=0

if f3(w) is negligible, i. e. if spin effects are negligible. If the phase of f;(w) calculated by
means of Eq. (11) would coincide with the phase calculated on the basis of ordinary
dispersion relation (7), it would mean absence of spin effects. A discrepancy between the
two calculations would indicate the importance of spin effects. Of course, a direct test
of the presence of spin effects at each specific energy can be carried out by simply compar-

do
()] = — (—

dt

. : . . - do
ing an ordinary dispersion relation prediction for —

with its experimental values
t=0
[21-23]. However, the use of Eq. (11) has the advantage due to its integral form which

smoothes the accidental errors. It would be very interesting to carry out this test practi-

do .
cally. For this purpose, one needs the experimental values of —-,—} at many energies which,
al y=¢

. ) do
unfortunately, are not available at present. More experimental data on i for small
'
momentum transfers would be welcome.

One of us (O. D.) acknowledges with gratitude the hospitality and financial support
extended to him by Warsaw University.



337

REFERENCES

(1] M. Gell-Mann, M. L. Goldberger, W. Thirring, Phys. Rev. 95, 1612 (1954).
[2] T. N. Truong, Phys. Lett. 31B, 461 (1970).
[3] M. Creutz, Phys. Rev. D6, 3533 (1972).
[4] V. Baluni, O. Dumbrajs, Nuc/. Phys. B51, 289 (1973).
{51 1. Guiasu, E. E. Radescu, Phvs. Rev. D10, 357 (1974).
[6] M. Damashek, F. Gilman, Phys. Rev. D1, 1319 (1970).
[71 S. Jorna, J. A. McClure, Nucl. Phys. B13, 68 (1969).
[8] O. Dumbrajs, Nucl. Phys. B38, 600 (1972).
[9] O. Dumbrajs, Nucl. Phys. B46, 164 (1972).
[10] C. B. Chiu, R. J. Eden, C. 1. Tan, Phys. Rev. 170, 1490 (1968).
[11]1 R. J. Eden, C. 1. Tan, Phys. Rev. 170, 1516 (1968).
[12] R. J. Eden, C. 1. Tan, Phys. Rev. 172, 1583 (1968).
[13] M. Gell-Mann, M. L. Goldberger, Phys. Rev. 96, 1433 (1954).
[14) F. Low, Phys. Rev. 96, 1428 (1954).
[15] M. Sugawara, A. Tubis, Pays. Rev. 130, 2127 (1963); Yu. S. Vernov, Teor. Mat. Fiz. 4, 3 (1970).
[16] R. Wit, Acta Phys. Pol. 28, 865 (1965).
[17] R. Wit, Acta Phys. Pol. 29, 563 (1966).
[18] R. Odorico, Nuovo Cimento 54A, 96 (1968).
[19] J. A. McClure, L. E. Pitts, Phys. Rev. D5, 109 (1972).
[20] O. Dumbrajs, M. Staszel, J. Phys. G1, 172 (1975).
[21] R. L. Anderson, D. Gustavson, J. Johnson, I. Overman, D. Ritson, B. H. Wiik, Phys. Rev.
Lett. 25, 1218 (1970).
[22] G. Buschhorn, L. Griegee, L. Dubal, G. Frankl, C. Geweniger, P. Heide, R. Kotthaus,
G. Poelz, U. Timm, K. Wegener, H. Werner, M. Wong, W. Zimmermann, Phys. Lett. 33B,
241 (1970).
[23] A. M. Bovyarski, D. H. Howard, S. Eckiund, B. Richter, D. Sherden, R. Siemann, C. Sin-
clair, Phys. Rev. Lett. 26, 16C0 (1970).



