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COULOMB DISPLACEMENT ENERGY IN THE ISOBARIC
AWNALOG PAIRS T1 —V

By S. Cwiok AND W. ZYCH
Institute of Physics, Warsaw Technical University*
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Coulomb displacement energy in the isobaric analog pairs Ti— V is considered. The
theoretical calculations of Coulomb displacement energy for #°Ca—4°Sc,4°Ti~4°V, 51 Ti-- 3!y
are performed and the results are discussed and compared with the experimental data.

1. Introduction

A manifestation of the electromagnetic interaction between the protons in the nucleus
is expressed by the energy displacement of the isobaric analog states. An experimental
study of the Coulomb energies began with the mirror nuclei, but after the experiments
of Anderson and Wong [1] and Fox, Robson and Moore [2], concerning the discovery
of analog states, systematic accurate measurements of the Coulomb energy difference 4E,
(the Coulomb energy shift, or the Coulomb displacement energy) in the neighbouring
nuclei of the isobaric pairs have been a subject of a number of recent investigations. The
main purpose of these measurements is usually to understand the isobaric analog states
as such, but each measurement gives a numerical value for the Coulomb displacement
energy.

As Janecke [3] pointed out ‘“‘the major objectives for studying Coulomb energies
are: 1) to obtain an understanding of the dependence of the Coulomb energies on Z and 4
(or on 4 and T) for a larger group of nuclei, or to obtain an understanding of the depend-
ence on the detailed nuclear structure for a smaller group of nuclei or even a single isobaric
pair, 2) to obtain information about the charge distribution and the charge radii of atomic
nuclei, 3) to obtain information about other charge dependent effects such as charge-
-dependent nuclear forces. All these problems are of course related”.

There is also a common interest in studying the shell effect on the Coulomb displace-
ment energy. Most suitable for these investigations are the measurements of as many
as possible the isobaric analog pairs of the same elements, especially in the vicinity of the
magic numbers of nucleons. This was the reason for our investigation of the isobaric
analog pairs of Ti — V.
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2. Theoretical description
The Coulomb displacement energy is defined by the equation
AEc = Eas'—Egs’ (1)

where E, is the energy of the parent nucleus Z _ in the ground state and E,; — the energy
of the daughter nucleus Z_ in the excited analog state. If we take into account commuta-
tion relations between the isospin components, and telation between ground state of
parent nucleus and analog state (with notation used in isospin formalism)
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we obtain the expression used for further calculations

1 A a” o
AE; = —— Ty, To [[ T4, Heml, T-] Ty, Todye 3)
2T,
We have assumed that the relation

[T,H]=0 4

is valid, where H, is the Hamiltonian of the strong interaction.

Next, we make an assumption concerning the form of the electromagnetic Hamil-
tonian Hgy.

In our considerations we shall use a model constructed as follows:
1) For the nuclei belonging to the analog pairs considered below we assume a physical
substantiated core, in our case the core of “*Ca nucleus (double magic nucleus).
2) The interaction between the protons outside the core is defined by the Coulomb law.
The interaction Hg, can be represented in the form

Hey = H:p+ch", (5)
where H(® is the one-particle Coulomb interaction of the protons with the core

H:p = Z cha;m(P)ajm(p)’ (6)

HZ? is the two-particle Coulomb interaction between protons which are outside the core
HP =% % <3l V210,95 as00(P)a2 (D)4, (P)de, s )
Xy A2A3Ag
Vi = GiIvPiiNZ+1,
VP is the proton-core interaction potential, V2P — proton-proton interaction potential,
a; (p) — creation operator for proton, a = (n, [, j, m) — the complete set of quantum
numbers describing the one-particle state in the potential with the spherical symmetry.
After we put (6) and (7) into the expression for the Coulomb displacement energy, we get

AE, = AE + AE®, (8)
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where
1 . - 3
AE:p = V:l}( TOa Toanljm(n) - anjm(p) ?To’ T0>gs
2T,
nljm
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2T0 id
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N,,; is the number of protons or neutrons in the shell. Below we give examples illustrating
expression (9) applied to the calculations of the one-particle Coulomb displacement
energy.
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The energy AEZ® in (8) represents the part of the Coulomb displacement energy
which is caused by the interaction of the protons outside the core.
1 R u
AE?® = — Ty, Tyl [T, HZ), T_-1 1T, ToDgs: (10)
2T,

In many cases, for better -agreement of the theoretical calculations with the experi-
mental results it is necessary to take into account, when calculating 4E,, also the difference
of the proton and neutron magnetic moments. The interaction energy of the nucleon magnet-
ic moment with the magnetic moment caused by the orbital motion is, according to Nolen

and Schiffer (4),
h\*1 dvie -4 f - =
V“(:p,n) - %< 1 i c {(#p %) or p}o_ . (11)
Mg/ r dr (u, for n
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Hence, as in the expression for 4E!P, we have

i : . R
AEtd = 2_';" (V;flp)uu - V;ft ) !;) (an,'(n) - anj((p)' (12)
0 nlj>ap(p)

The non-reducible matrix elements V7’ have the form

VI = iV inlyN 2 +1 . (13)

3. Numerical calculations

Numerical calculations of the Coulomb displacement energy for the analog pairs
Ti — V are performed for a few sets of parameters of the accepted model, i.e. the param-
eters describing the charge distribution and the shell model parameters of *%Ca. In
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Fig. 1. Protou-core interaction potential and charge distribution. p¢, ;v — Fermi parabolic distribution
with parameters set IV. o, v, vi and V¢, v, vi — charge distribution and proton-core interaction with
parameters set V and VI respectively

order to calculate the one-particle contribution to the energy AE. we used models with
the following charge distribution:

a) Charge distribution habitually used in the shell model (Fig. 1), i.e. the spherical sym-
metric distribution with the charge density

0o = 0.05i11{protons/F?]
and the radius
R, = 45F(R, = 1.24A1),
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b) Fermi parabolic distribution

The parameters w, z and c, taken from [5, 6] are given in Table I. These parameters are
obtaified (as the result of a fit) from the scattering of the high energy electrons.

TABLE 1

Charge distribution in *%Ca o(r) = goll + wr?/c*] {1+ exp [(r—¢)/z]}-! Charge distribution parameters
obtained from the electron scattering experiments

Eelectron Pz:;n- ¢ 2 W Fo.s ro.s]AY® | £(90-10) | <(r2>1/2
nergy s F F F F F F F
[MeV] st [F] [F] [F] [F] [F1 (F] [F]
250 I 3.7444 0.5255 —0.03 3.7133 1.0218 2.351 3.4762
250 II 3.918 0.521 —0.124 3.682 1.013 2.48 3.444
500 111 3.797 0.534 —0.048 3.746 1.031 2.42 3.517
757.5 v 3.7369 0.5245 —0.03

¢) Charge distribution calculated from the shell model

1 : :
o(r) = Zr (2j+1)R31j('"),
nlj<ap(p)
where R, ;(r) are the radial wave functions of the protons.

These functions were numerically calculated with the Saxon-Woods-type potential
parameters given in Table II. One should remember that the parameters given in the

TABLE 11
Parameters of the one-particle potential

Central part of Spin-orbital part
. the potential f the potential
Nu e potentia of the potentia Remarks
cleon
ro a Ve Yo so Adso Uso
[F} [F]1 | [MeV] [F] [F]
124 | 0.63 | =58.63| 124 | 0.63 | 31.88 | Shell model (SM) | Coulomb potential
Pro- taken from electron
ton | 117 | 0.75 | ~6568| 1.07 | 0.75 | 163 |Opticalmodel (OM)| Scattering experi-
ments
New. | 124|063 =4822 124 | 063 | 31.88 | Shell model (SM)
tron | 117 | 075 | —52.62| 1.75 0.75 | 21.79 | Optical model (OM)
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TABLE II1
One-particle Coulomb energy
One-particle state v iMev A A A G N VIR
Sets of charge o I N ! Vit ) MeV]
distribution parameters o Esp One-particle Energy caused by
) [MeV] Coulomb energy magnetic moments
; 1f1/2 -9.08 6.911 ~0.184
2ps/2 —5.14 6.771 —0.057
I 142 —9.08 6.889 -0.179
2p3/2 —-5.14 6.736 —0.056
i 1f7)2 —-9.08 6.887 —0.180
2pa/2 —5.14 6.742 —0.056
v if52 —9.08 6.915 —0.188
2pa/2 —5.14 6.777 —0.057
g‘;‘gi hd;:e“b“;‘o“ tf“’m .| 10 ~7.39 7.278 ~0.225
wi parameters o 2 —5.14 6.987 —0.066
OM V Pa/z
Charge d’s‘“b(‘;‘g’:d with 12 ~7.39 7.022 ~0.163
@c = const an param- | o, . ~5.14 6.599 —0.047
eters VI

second and fourth line, taken from the optical model [7], give much better agreement
with the experimental values of the energy levels than the traditional parameters used
in the shell model [8]. The one-particle Coulomb energies obtained for the individual
models of the charge distribution and the parameters describing this distribution are
given in Table III. In this table are also given the one-particle energies connected with
the difference of the interaction of the proton and neutron magnetic moment with the
orbital magnetic moment. The one-particle Coulomb energy gives the main contribution
to the Coulomb displacement energy, what we can see in Table VI, It is characteristic
that all four sets of parameters I, II, IIl, IV from Table IIl, resulting from the electron
scattering experiments, give practically the same one-particle Coulomb energies. These

TABLE 1V
Two-particle diagonal matrix elements ¥ }f*7/2 127/2 in MeV
J SM oM
0 0.7636 0.7874
2 0.6399 0.6651
4 0.5763 0.6008
6 0.5643 0.5890
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energies are obviously too small. The spherical charge distribution with a constant density
(row four, Table III) gives the energy higher by about 100 keV, but still too small in
compatrison with the experimental value. However, the one-particle Coulomb energy
calculated using the optical model parameters seems to be proper, what can be seen from
the last row of the data in Table VI, where the calculated and measured Coulomb displace-

TABLE V
Two-particle non-diagonal matrix elements ¥ }{7/22p3/2: 1£722p3/2 = pDy (— 1)/ Ex in Mev
J SM OM
!
v | v ve
2 0.3212 : 0.0026 0.3252 0.0026
3 0.2915 ‘ 0.0065 0.2957 : 0.0069
4 0.2796 0.0054 0.2839 0.0060
5 0.3093 ! 0.0179 03134 E 0.0193
TABLE VI
Coulomb displacement energy
1 h
Analog pair Param- | 4E (1p) AE? AE_(2p) A Eé AES 8(AE,) |4 E)I4E,
eters [MeV] [MeV] [MeV] [MeV] [MeV] [MeV] [%]
!
. | 6.891 —0.166 | 0.563 7.288 0.466 6.0
II 6.867 —0.166 0.563 7.264 0.490 6.3
I 6.866 —-0.162 0.563 7.267 7.754 0.487 6.3
A =351
v 6.895 —0.169 0.563 7.289 0.465 6.0
\'% 7.236 —0.202 0.586 7.620 0.134 1.7
VI 6.961 —0.146 0.586 7.401 0.353 4.5
Ti—V
I 6.911 —0.184 0.623 7.350 0.434 5.6
II 6.889 —-0.179 0.623 7.333 0.451 5.8
11 6.887 —0.180 0.623 7.330 7.784 0.454 5.8
A =49
v 6.915 —0.188 0.623 7.350 0.434 5.6
A\ 7.278 —-0.225 0.651 7.704 0.080 1.0
VI 7.022 —0.163 0.651 [ 7.510 0.274 35
4985¢c—4°Ca \' 7.246 —0.207 — 7.039 0.051 0.7
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ment energy for the analog pait “°Sc — #°Ca are in agreement with the accuracy of about
0.7%. In the case of the analog pair “°Sc—*°Ca, the energy AE, is defined by the one-
-particle Coulomb energy. To calculate the two-particle part of AE, one has to know the
non-reducible matrix elements ¥;*7/»10*7/2 and pjf7/22p3/2107/22032  The radial integrals Fy,
and G,, coming into the matrix elements mentioned above, were numerically calculated.
For the neutron radial function describing the states 1f,, and 2p;,,, we accepted
Saxon-Woods potential parameters given in Table II. Tables IV and V contain the numeri-
cal values of the appropriate matrix elements.

Let us point out that the exchange terms are, on an average, about two orders ot
magnitude smaller than the direct terms. The final value of the Coulomb displacement
energy for individual sets of parameters and individual analog pairs are given in Table VI.
One can also find there the comparison with the experimental values [3] from which it
is evident that all sets of the charge distribution parameters taken from the experiments
of electron scattering give too small (by about 6%) the Coulomb displacement energy.
The homogeneous charge distribution is only slightly better than the others. The only
charge distribution which gives the values of the Coulomb displacement energy in good
agreement with the experimental results was taken from the shell model with parameters
deduced from the optical model [7]'.

For the analog pair 5'Ti—>'V, calculated 4E" gives the value different by 1.7%
from AEZ®, for 4°Ti—*°V by 1%, and by 0.7 in the case of the analog pair 4°Sc—*°Ca.
The conclusion is that the most reasonable way of calculating the Coulomb displacement
energy is to use the charge distribution from the shell model with the optical model param-
eters. As we can see, the Coulomb displacement energy can also be a sensitive test of
the optical model parameters.

The authors would like to thank dr Malgorzata Haensel-Wygonowska for help in
the numerical calculations and for a valuable discussion.

Detailed calculations of the expressions used in this work are given in [9].
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! The potential depth has been chosen to get agreement with the known one-particle energies, i. e.
the proton energy E = —9.622 MeV for the state 1f;,; and the energies £ = —5.14 MeV and E= —7.22 MeV
for the states 2ps;, and 1f;;, for neutrons, respectively.



