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A class of exact interior solutions for a spherically symmetric perfect fluid distributions
with nonhomogeneous density and pressure is obtained. It is shown that in some cases the
intial outward motion is reversed and finally the system collapses to a singularity of infinite
matter density. There are also cases when an initially collapsing sytem may bounce back so
that the ultimate catastrophe can be avoided. The metric obtained is nonsingular and satisfies
the conditions that the pressure and matter density within the distribution is nonnegative.

1. Introduction

Spherically symmetric relativistic fluid spheres consisting of perfect fluid were discussed
in the literature by several workers with different ways of approach. One of them is to im-
pose certain symmetry conditions and restrictions on the metric and to find some analytical
solutions (McVittie 1967, Thompson and Whitrow 1967, Bonnor and Faulkes 1967, Bondi
1969). Most of them considered a fluid of uniform density. Nonuniform models were
studied by Nariai (1967) and Faulkes (1969). We give here a new class of exact interior
solutions for the radial motion of a perfect fluid sphere with nonuniform density and pressure
distributions. Although the solutions are, to some extent, similar to those given by
Nariai, they are different and have different properties. Our solutions include cases of
collapse to a singularity as well as those of bounce. The interior solutions can be matched
at the boundary with the outside Schwarzschild metric (Cocke 1966). From the
boundary conditions one can study the behaviour of the model at different instants
of time, the only restriction being that the matter density p and the pressure p satisfy the
following conditions

0 >0 in the region 0 < r<rg,
p >0 in the region 0<r <vr,,
p=20 at r=ro,
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so that the models are physically realistic. It is an interesting property of the solution that
it closely resembles the cosmological Robertson—Walker line element and indeed goes
over to the latter in a special case.

2. Field equations and their solutions

We assume that the sphere consists of a perfect fluid and its motion is shear free, so
that the line element can be written in the isotropic form

ds* = e'dt* —e“(dr? +r*d0* +r* sin? 0dg?). '¢))
Using co-moving co-ordinates we further get
ot = e 284 )
and
Tll = T22 = T33 = =D T44 = 0. 3
The field equations give the following two relations (Faulkes 1969)
e o = C(t) 4
and
7R I(k)R? 5
[ K s
ax? )

w,

where R = e"“?and k = r?. I'(x) is an arbitrary function of x. As was pointed out by
Faulkes, one may obtain the case of uniform density by choosing I'(x) = 0. On the other
hand, when I is a constant one arrives at Faulkes’ solution. In this paper we give a new
class of exact solutions with I' as a chosen function of k. The solutions are

2 (T+aly)?
y

ew

and
1

¢ = (T +afy)?’ ©)

where vy = Bk +C’ = Br?+ ', T is a function of time and a, B, C are arbitrary constants.
2

Here I'(x) = ——————. The solutions for g,, = ¢" are obtained from (4) by a suitable
(Bx+C")

choice of constant of integration C(z). One can now eliminate one of the arbitrary

constants C’ by a transformation of the radial co-ordinate, so that the line element may

be written as
a 4
T+ ——
1 5 ( 1+kr2)

ds? = — i
’ (L+kr?)?

r+ —2Y
14+ kr?

(dr*+r*d0* +r* sin® 0dp?). (1a)
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From (la) by a suitable adjustment of the scale factors for the radial and time co-ordinates,
one can choose k as k = +1 or 0. The line-element (1a) closely resembles the Robertson—
Walker cosmological line element and actually reduces to the latter when ¢ = Q. The
case k = 0 corresponds to the open model of Einstein and de Sitter, where the space-time
becomes spatially flat and spatially infinite in extent.

One can now evaluate directly from the field equations the matter density ¢ and
pressure p as

12k 24ak  (1—kr?)

8ro(r, 1) = 2T+ ——— + 7
et 0 (T+ajy)* * (T+afyy (L+kr) @

and
dak  (1—kr? 4k

8ap(r,t) = —4T(T +afy)—12T% - s - , 8
2> ) (T+afy) (T+alyy (L+k?)  (T+ajy) ®
where y is now written for (1+kr?).
We obtain two more relations from the divergence equations 7", = 0, that is
, (o+p)2akr
e ©)
(T+aly)y
0= —3(e+po, (10)
with
aT
= T
(T+ajy)

3. The boundary conditions and the behaviour of the model

The metric (1a) is matched to the Schwarzschild metric across the moving boundary
(Cocke 1966) provided that
p(ro, 1) = 0,
2m = % Cbgrge@woﬂ—vo)_% w;}zr(s)ewoﬁ _rgwéewcﬂ’ (11)

where the subscript “0” indicates the values at the boundary r = ro and m stands for
the Schwarzschild mass. In fact the constancy of m, that is the conservation of the gravita-
tional mass, is equivalent to the requirement of the vanishing of pressure at the boundary
(Raychaudhuri 1953).
In view of metric (1a) the condition (11) reduces to
2m ve 4k 8ak 1 N 8ak’r: 1
ry (T+ajye)®  (T+alyo)* (T+alyo)® yo  (T+a[yo)’ yo
. 16a%k*r: 1
(T+alye)° 5

4T? =

(12)
with y, = (14-krd).



392

Putting (T+dafy,) = So, since T2 > 0 one can readily obtain the relation

2m (L krdy 16a%kr2 8 (1—krd) S _akS? > 0 (13
— r ———5 | —8ak ———- 8y — = 0.
r ° (1+kr2)y? (1 +kr2)"° 0

The equality sign corresponds to the case T = 0, which refers to the turning point in the
motion.

Again from (8) and (12) remembering that p = O atr = r, one gets for T= 0 (or Sp = 0)
the relation

3y N 1 ,  16a’k*
2(S0) = 4SOSO = — SO [2ks0 +%{ (1+kr 0) + O—-FW}] (14)

When k = +1 the right side is negative and d(S3)/dt*> < O for d(S3)/dt = 0. This is
equivalent to stating that S3 will have a maximum and no minimum. The system in such
a case with an initial outward motion will reach a maximum of the proper volume, will
reverse its motion and finally will collapse to a singularity S, — 0; i.e. to a singular state
of infinite density. A condition necessary but not sufficient for bounce from initially collaps-
ing state may be given by k = —1.

4. Case of collapse to zero volume

Case I:
Let k= +1,a>0and (1-r2) > 0. Putting

_ 8a(1—rp) 2y 16a2r§]
TTam 0T [3( O )

the relation (13) gives

X =453+ PS,— Q0 <0. (15)

The equality sign corresponds to the instant 7= 0 when the motion is reversed and this
occurs for two values of Sy given by
~P+(P*+16Q)"/*

So = : . (16)

The negative value of S, is not allowed because of the physical requirement that p’ at
the boundary r = r, should be negative (see Eq. (9)), which is again a consequence of the
fact that p = O at r = r, and p > O in the region 0 <C r < r,. Thus there is a maximum
of S, given by

—P++(P*416Q)'?
8

(S O)max =

3

where the initial outward motion is reversed and finally collapses to singularity of zero
proper volume at the boundary. One should note that at this moment, although the proper
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volame at the boundary tends to zero when $, — 0, the corresponding quantity remains
finite in the region 0 << r < r,. The matter density increases to infinity at all points at the
final stage of collapse because then T — oo (see Eq. (12)). In view of (7) and (9) ¢ > 0
throughout the region 0 < r << rq and p’ < 0 at the boundary r = r,. In view of the fact
that at the boundary p = 0 and p’ = 0 and also that everywhere within the distribution
the matter density ¢ is positive one can conclude readily from the relation (9) that p must
be monotonically decreasing function of r. Thus we get a physically realistic collapsing
model with ¢ > 0 and p > 0 in the interior region.

Case II:
k= +1, a<0, and (1—r2) > 0. In this case the relation (15) reduces to
485—PS,—Q <0, (152)
where P and Q are again positive with P in (15a) being given by
_ 8a(rg—1)
G
©Q has the same value as before.
It is also a collapsing model with the same characteristics as in case I with S, being
replaced by —S,, without any change, however, in SZ which is a measure of the dimension
of the system. Here the negative root of (15a) is admissible. It can be shown in the same

manner as before that the matter density ¢ and pressure p remain greater than zero in
the interior and vanish exactly at the boundary.

5. A possible case for bounce

Case III:

Let k = —1. Now since y = (1—r2), 1 > rZ in order that there is no singularity of
the type y = 0 in the metric for any value of r in the interior of the system.
We further choose ¢ < 0 so that ¢ = — |a|. The condition (13) can now be written

in the form
1475 2m 16a%r?
482 -8 Y So+ | 51—+ —2 | >0
’ '“‘(Hé) RO Ay

s (- lal
0 l—r(z, )

The equality sign corresponds to the turning points in the motion of expansion or
contraction of the fluid sphere or equivalently to the situation T = 0. Putting

1+r] 2m 16a*ry
P, = 8]aI< °> and Q, = [7(1—&2,)3-{- "]
]

12 (1—rd)?

(an

with
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relation (17) reduces to

X = 4S;~P,S;+Q, =0 (18)
which is again equivalent to

X =(S$o—8)So—S,) > 0. (18a)

The quantities S; and S, correspond to two roots of the quadratic equation X = 0. It
turns out from the relation (18a) that S, cannot lie between S, and S,, because in this
case X < 0. So either the system may collapse from a maximum volume corresponding to

P, —(P1—160,)'*
S, = :

to a singularity S, — 0 (where the matter density becomes infinitely large at all points
of the sphere) or it may expand from a minimum volume corresponding to

P +(P}-16Q)"*
S, = : .

The latter case corresponds to a bounce for an initially collapsing model turning back at
the point S, = S,.

We next examine the magnitude of density and pressure of the fluid in the case III.
It turns out from (7) and (12) that

2m (1-rg)? 16a%rd
S no(re, ) =|—5 —=— + =33 |- 19
o =33 5+ )
The relation (19) immediately gives for the matter density at the boundary r = r,, the
condition g(re, t) > 0 at all instants.
Further taking derivatives of both sides of (7) with respect to the radial co-ordinate

one obtains
30a%r 1+r%

(T_ |a12)"’ 1-r*’
1—r

which shows that the matter density ¢ is a monotonically increasing function of the radial
co-ordinate. It turns out, therefore, that the problem of obtaining a positive density
everywhere reduces to the problem of making the central density p, (at r = 0) positive
by a suitable choice of the constant parameters.

In fact, this can be shown in the following way. The condition that ¢, > 0 at the
moment T = 0 requires in view of (7)

Ty = (20)

T < 3a|, (21)
where
la] la|

or T=S8;+ .
1—r¢ ! 1—r]

T=S2+
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Since S, > §,, it is sufficient to show that

|al o
S+ —— < 3jai, 22)
L—rg
so that at the points of reversal of motion the central density remains positive. The inequal-
ity (22) is, in fact, equivalent to the form

ro < 1/2 (23)

which is a restriction on the dimension of the system. Again the condition that §, and S,
are real (i.e. P; > 16Q,) puts a restriction on the Schwarzschild mass of the fluid in the
form

2r3lal?

If the above inequalities (23) and (24) are satisfied one gets a positive density distribution
during the whole regime of collapse in case II, as is evident from (7). Regarding the
example of a bouncing model the density distribution is a positive function at least close
to the moment of bounce. How long after the bounce the density will remain non negative
everywhere will depend on the magnitude of a.

Case IV:

k = —1 and g > 0. We get in this case basically the same models as those discussed
in case III with S, being replaced by —S, and they do not need any separate discussion,

6. Conclusion

We have given above the exact solution for a perfect fluid sphere which collapses
to a point from a maximum volume or bounces back from a minimum volume depending
on the parameter chosen. For an external observer in the Schwarzschild co-ordinates the
relation between the radial co-ordinate r and the co-moving co-ordinate r is from (11)

r(r, t) = re”/?. (25)
Also
e n rr\? 2m )
e~ (ry(r, 1) = (?) (1= =1, (26)
r/e ro /.
where
- or _, or
r=-—, r' =

._5;.

Equation (26) shows that at the turning points r, > 2m. One of us (Banerjee 1971)
has shown that sometimes we can have a peculiar situation when (¥'/r), is negative, i.e.
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although r, > 2m, r may equal 2m outside the boundary. Just outside the sphere of
matter the circumferences of the spherical surfaces decrease as the radial distances increase
in this case. The condition that (r’/r), < O at the turning points is seen to be

So(l —k2ro*) < dakrl. (27)

Substituting the values of S, in the different cases we find that this codition cannot be
satisfied in the case of bounce, but it may be satisfied for the cases of collapse by giving
suitable values to the parameters. This means that a sphere always bounces back before
reaching the Schwarzschild radius as expected.

Our thanks are due to Professor A. K. Raychaudhuri for reading the manuscript and
suggesting improvements.
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