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MASS AND RAPIDITY DISTRIBUTIONS OF DIFFRACTIVELY
AND MULTIPERIPHERALLY PRODUCED CLUSTERS

By W. Sowa
Sektion Physik, Kari-Marx-Universitat, Leipzig*
(Received August 25, 1975)

The mass and rapidity distributions are derived for clusters produced according to
a diffractive and a multi-Regge mechanism. The careful treatment of the kinematics is essential.
The results are compared with empirical functions. Some constraints on the production
mechanisms, which follow from this comparison, are investigated.

1. Introduction

Assuming that in a collision of two hadrons clusters or firebalis are produced which
decay in stable hadrons, Hagedorn and Ranft [1] have described single particle spectra
using the Thermodynamic Model. In this model the cluster distribution after the collision
was described by means of two empirical functions. An investigation of particle correlations
allows one to deduce information on the cluster production mechanism [2].

The experimental results of multiplicity distributions and correlations can be explained,
if the existence of a diffractive and a non-diffractive component is supposed [3, 2]. At
present two mechanisms are proposed for the cluster production within the non-diffractive
component; namely the independent emission of clusters and the multiperipheral production
of clusters [4-10]. Non-diffractive clusters are usually assumed to decay isotropically, while
diffractive clusters decay, perhaps, anisotropically [11]. By these assumptions inclusive
distributions [1, 6], inclusive [2, 5, 6, 9, 12] and semi-inclusive [7, 12] rapidity correlations,
azimuthal angle correlations [9, 10] and multiplicity distributions [13] are well described.
In these calculations the mass and rapidity distributions of clusters are input functions.

The aim of the present paper is to calculate the exclusive mass and rapidity distributions
of diffractively and non-diffractively produced clusters in two and three body final states
(clusters or stable particles). By comparing these distributions with empirical functions
used in models which describe the data, we want to determine constraints on the cluster
production mechanism. The first step towards this aim was the calculation by Ranft
and Ranft [4] of the velocity weight function F(4) of the Thermodynamic Model within
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the multi-Regge model. The present paper is an extension of this work. Other calculations
of F(2) were made by Cerulus [14] using an optical model and by Celeghini and Lusanna [14]
using an hydrodynamical model in which the velocity distribution is computed for the
hadronic matter after the collision. A calculation using the Veneziano model was performed
by Demtschenko and Kuchtin [15], who obtained a Feynman-x distribution for the missing
mass similar to Ref. [4].

Further investigations of cluster production in the multi-Regge model were made
by Hamer [16] and Basetto, Ranft and Ranft {17]. Matsuda, Sasaki and Uematsu [18] have
calculated inclusive cluster mass and rapidity distributions using a multiperipheral model.
The strong ordering limit for clusters used in this work is very useful for analytical calcu-
lations, it is, however, unrealistic, as it corresponds to a nonoverlapping of the decay
products of the clusters. A multiperipheral approach to the cluster production using the
Bethe-Salpeter equation was adapted by Akimov, Chernavskii, Dremin and Royzen [19].

In Section 2 a short description of the amplitude is given. The general formulae are
derived in Section 3. In Section 4 the numerical results are presented. A critical discussion
follows in Section 5.

2. The amplitude

The following amplitude is used to describe a final state with & clusters and (n—k)
directly produced particies (i.e. not via cluster decay; see Fig. 1)
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The mass scale is fixed with 5o = 1 GeV?2,
The third factor represents the mass dependence of the coupling functions. We consider
a cluster 7 as the sum of all possible states with the mass m;. Then we use the optical theorem
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Fig. 1. The multiperipheral graph (clusters and stable particles are distinguished only by variable or
fixed mass)

and write the squared coupling function as the absorptive part of the foreward scattering
amplitude of the Reggeons o;—(#;,—;) and o,(z;) or of one incoming particle and a Reggeon.
This absorptive part for high masses has the form used in Eq. (2.1), where the t-dependence
of the two triple-Regge couplings is included in the residue factor exp (a;#;). Assuming
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duality we can use this ansatz also for low cluster masses. At limited momentum transfers ¢,
and high s; and m?, the propagator in Eq. (2.1) is also obtained from the Bali-Chew—
Pignotti form of the Regge-propagator [20]. The expression for the propagator and the
mass dependence of the vertex function can also be derived, if a summation over a multi-
-Regge chain is performed. This has been done by Caneschi and Pignotti [21] and by
Silverman and Tan with the Chew-Goldberger—Low integral equation [22].

3. The kinematics

3.1. The mass distributions of clusters

In the following only pp-collisions are considered. If in a n-body final state k masses
are variable (clusters) we obtain the following mass distribution for all clusters

—— = fd%{A,,(mf, s 81y e Syt Ly ey By )12 3.1)

Here k (k < n) is the number of clusters which we assume to be produced along a multi-
-Regge chain, ¢ is the flux factor and d@,, is the n-particle phase space. The mass distribution

for the cluster / is therefore
- dmizjdcb,,jA,,§2. (3.2)
dm,

We wish to study in detail two- and three-body final states. Since the masses vary
the kinematics has to be particularly carefully treated.

For a graph with n = 2 and one or two clusters in the final state the amplitude (2.1)
is written in the following form:

1A,(s, t, m?, m3)? = B,e™, (3.3)

. 55 2a(0) mf 21(0) m% %2(0)
B,(s, my, m3) ~{ - 53 — — ,
miyms; S S

ss
D(s, mi, m%) = a,+2o In <*~2~0—2) ,

mim,

with

where the trajectory oft) = a(0)+a't is exchanged.
We obtain the mass distribution for a graph with one cluster

oy _ Byl m = m) T
Tz B dt exp [D(s, m%, m>)1],
dm? 167A(s, m2, m?) P [D(s, mi, my)i]

‘min
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and

2 2
d0'2 - Bz(s, my, mp) {eD(S9m2!’mzp)tmax_eD(s:m2hm2p)rmin]' (34)

2 ) 2 2 2 2
dmy 16mA(s, m;, my)D(s, my, m.)

For a graph with two clusters it is

(Vs=my)?

2 2

do, _ 1 dm? B,(s, my, m3)
P2 0 2225 T T2
dm?  167i(s, m2, m?) D(s, m3, m3)

mimin= (mp +mp)?

% [eD(S,mzx,mzz)fmax _ eD(S,mzz,mzz)im;n]’ (35)
with
g STMAmm skmi=my N mimy) NAsmi,md)
Lnax = Mg +my— = = + - = , 3.6)
max 2/s 2/s 2/s 2s

and
Mx,y,2) = X2+ y?+22—2xy—2yz—2zx.

The term —exp (Dt,;,) cannot be neglected here because of the variable masses.
For m{+m, = \/E, itis [Prem| = 0, 1.€. T = tmin- Therefore the second term affects
the cut-off of the distributions at the kinematical limit (m,+m, = ,/s).

If we want to describe nonleading clusters, at least a three-particle final state has
to be considered with a cluster emerging at the middle vertex. The three-body phase
space integrals can be transformed to integrals over the invariants sy, 5, #,, ¢,. Then the
t; and ¢, integrations can be performed analytically [23].

The amplitude for a three-body final state is written in the form

2 .2 22
A3(S1, Sy, 11, By, My, M3, m3)|° = By exp (Dt +D,t5),

S1So 221(0) 5,50 222(0) m% a1(0) m% a2(0) m2 a3(0)
B.(s 2 2 2 3
3(51a Sa, My, My, m3) ~\TETT 2.2 ’
mim; m,ms So So So

548
2 2 ’ 199
D(s,, mi, m3) = a,+ 2| ln( 5 2) ,

mim;

5,8
Dy(s,, m2, m) = a,+2¢5 In (2—"2) ) 3.7
mymy

We get the mass distribution for the central cluster 2:

d0-3 d0-3
- dm?ds,d - 3.8
dm? _[ I I M2 g a5, T dsldszndm (3:8)

d0'3 _ B3J
ds,ds, [[ dmi ~— 4n’A(s, m2, m?)’
«

where
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with
Dl 2 2 2 1 2 2 2
J = 4 exp 5 Sy—s+m;+my+my— " (my —mZ) (s, —my)

sinh \/ A(s m,,,mb)C/s

JC

D 1
+ -2-2 l:s1 —§+ mf +m§+m§ -y (mf—m,f) (54 ——mi)]} (3.9)

and
C = DIA(s, sy, m3)+ D3A(s, s;, m3)+2D,D,[s(s—s, — 5, —m? — m3+2m32)
(s, ~—m§) (s2 —mh]-
The remaining integrations over s;, s, and m? have to be performed numerically.

3.2. The rapidity distributions of clusters

First we note the kinematical relations between the rapidity and the invariants. From
Eq. (3.1) we obtain the rapidity distribution of a cluster j by integrating over the masses
and inserting a S-function

= CJ. | I dmid®,| A, *6(n;=n s, Ses tes MY))- (3.10)

dn;

The rapidity of cluster j is

. E.
n; = tanh™* (—I;_ﬂi) = cosh™! <- H’__) sign (py;;). 3.11)
i VP +m

In the following we consider symmetrical distributions in negative and positive cms-
-rapidity and suppress the negative rapidities.

'A,i? and d®, do not depend explicitly on the rapidity n. With the help of the §-function
one other quantity can be eliminated from the set {s;, #;, m?}.

dsn | 2 ' 2 dv g
= cJ Am2de,|A,)F ~—5w—v(n ...)), (3.12)
dn; dn;

i
! 2
ve (s, t, my).

Ip the following v and dv/dn are computed. This should be done for leading and nonleading
clusters separately. The rapidity of a leading cluster 1 is considered in a final state with
arbitrary number of bodies. We are working in the cms.

The momentum transfer to the missing mass /s’ is

ty=1t'= m3+mf‘2EaE1+2Pa||P1||:

(Pay = 1P, (3.13)
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with
s+mi—s'

E = —— V' = e 2. .
1 2 s s = (p2+ ... +ps) (3.19)

Substituting p,; and E, in Eq. (3.11) it follows that

s+mp—m? L s+m2—m}
s| 2t —mZ—m} +s—m} —5 ]
‘ s s

= tanh ™! J . 315
M1 (s+m1—.s)\//1(s m2, m ) (3.15)
Here we choose v = m? and with K = Vs, m2, m2) tanh n, we have
s+mi—m}
5[2‘ —mg—my+s—s' <—*—*b—> —(s—s')Ki|
$
P=— . 3.16
" K+s+mi—m} (3.16)
The derivative is
dm? —s'+ 2 AGs, 2’ 2
dn " [ -~ ] () 3 49)
dn, (s, m2, m?) tanh n, +s+m2—m? J cosh®n,

The #’-dependence of m? and dm?/dy, (implicit in m3(¢’?)) prevents us from integrating
over ¢’ analytically. To avoid the connected numerical difficuities we neglect in m}
the p, of the cluster.

E +m2_ '
7, = cosh™* (—1—> = cosh™! (s— ! _s) (3.18)
m, 2my \[s
Thus we have
m?, = s(cosh i, ++/sinh? 4, +s'/s)% (3.19)

Since m? < s only the negative sign of the square root is relevant. The Eqs (3.17) and
(3.19) with m?%, are needed in the calculation of the rapidity distribution (3.12).

To find the expression for the rapidity of an arbitrary central cluster ¢ we use the
following notations:

p1+ +pc—l = P P12 = mlza (pl+pc)2 St

Sy (3.20)

Pesi1+ oo +Pn =D pr=ml (p.+p)

In this way the problem is reduced to a quasi-three particle final state. It is

s+mi—(p+p)  s+s,—mi-m?
E, = (rtp)”_ 5 U (3.21)

2./s 24/s

and

Pe)) = — Py~ Py (3.22)
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In analogy to (3.16) we compute p, and p; via the momentum transfers ¢, and ¢, respec-
tively. We obtain

+mp—m} +m2 —m}
s [Zt —2t,4+(m} —m?) < sy = ) +(5,~5)) ( 5 i )]
s s

(s, mZ, mZ) (s, +5,—m? —m?)

7. = tanh™!

. (3.23)

Using the variables defined in Eqs (3.20), the rapidity of a central cluster does not depend
on its mass. We choose v = s;
25(t,— 1)+ (m?Z —m2) (s+ mE —m2) +s,(s+ m2 —m})—(s,+m} —mHK

= . 3.24
S K+s+m,f-—mf ( )

The derivative is

ds, m2+m?—s,—s, Vi(s, m2, m?
dn. A, m2, m5 tanh 5.+ s+m?2 —m? cosh? 7,

(3.25)

The 1,, t,-dependences of s, and ds,/dn. do not allow the performance of the ¢,, ¢-integrations
in Eq. (3.12) analytically, as was done in Eq. (3.9). Therefore we neglect the transverse
momenta of the clusters again and have
E s+, —ml—m?
coshyp= -2 =" —— ' 3.26
1 m, 2m, /s (3:26)

and finally
s, = m{+ml—s,—2 /s m cosh,. (3.27)

In the calculation of the rapidity distribution (3.12) Eqgs (3.25) and (3.27) are used.
Now we are able to write down the rapidity distributions of the graphs under consideration
according to Eq. (3.12):
— the rapidity distribution of leading clusters
— in two-particle final states

do, do, dm?

= —" —, 3.28
dn, dmf dn, ( )

daz_J‘ : _do, d‘mf
dny ) dmidmi dny,

3.29)

where dm?/dy, is given in Eq. (3.17). There it is 5" = m2,
— in three-particle final states

do, do, dmf
—_— = dm?3ds.d . 3.30
dny IH M dsldszndmk d'11 ( )

Here we have in Eq. (3.17) 5" = s,.
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— the rapidity distributions of central clusters

3

doy do, ds,

—= = dmid , 3.31

dn, fH M43 ds,ds, [ dmi dn, (331
J k

where ds, dn, is given in Eq. (3.25). There it is m} = m?, m, = m3 and 5, = s,, 5, = s,.
The remaining integrations over the s; and m? in Egs (3.28)-(3.31) are performed
numerically.

4. The results

4.1. The mass distributions
4.1.1. The diffractive clusters

From triple-Regge fits the missing mass distribution for single diffractive cluster

production in pp-collisions is obtained [24]:
do 1.2 05
dam* m*  m*

“.1)

The result of the numerical calculation of the single diffractive graph corresponding to
Eq. (3.4) is shown in Fig. 2 with ap(r) = 1+0.3¢ for various energies up to /s = 50 GeV.
The contribution with 2,(0) = 1 (Fig. 2) is consistent with a distribution da/dm? ~ 1/m>

8.
dm?

2 i
80 m? (Gev?) 120

Fig. 2. The mass distribution of a single diffractive graph &(0) = 1.0, q; = 3 GeV-2

besides of the decrease near the kinematical limits, which we obtain due to the careful
treatment of the z-integration in Eq. (3.4). The term with &,(0) = 1 corresponds to the
triple-Regge-PPP-contribution in the Mueller-Regge language. The contribution with
&,(0) = 1/2 (corresponding to the PPM-term) shows a decrease proportional to mi—3.
Thus we are able to reproduce the mass distribution (4.1) with our model. Moreover,
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we give an improvement to the distribution (4.1) for nonasymptotic energies because of
our exact kinematics.

In calculating of the mass distribution of the cluster 1 in double diffractive events,
we have taken into account four contributions:

§,(0) = 2p(0)  3,(0) = xp(0) (PPP—PPP).
&,(0) = 0p(0)  &(0) = 2,(0) (PPP—PPM).
5,0) = uy(0)  5(0) = 2p(0) (PPM—PPP).
5,(0) = 2, (0)  &(0) = ap(0) (PPM—PPM).

W=

From the first and second contribution we obtain a mass distribution proportional to m[ %,
whereas the distribution according to the 3-rd and 4-th term is proportional to my°.
Thus the mass distribution of the first cluster is not essentially affected by the vertex
mass dependence of the second cluster. With this result we predict the following mass
distribution for clusters produced in double diffractive events for asymptotic energies or
by neglecting the exact kinematical limits for nonasymptotic energies

do C, C,

am? "t e *2)

4.1.2. Central clusters

In the literature various cluster mass distributions are used. Pokorski and Van Hove [8]
use in an independent cluster emission model the following distribution

do m\*
—— ~ mexp [- (—) :I ) 4.3)
dm Mg

with my = 1 GeV and « = 1.3.
For a mass-rapidity distribution of central clusters in an independent cluster emission
model Ranft and Ranft [7] take

bz(m — o) exp [—_b(m —my)]
21n (%i@)
nm

where r is the number of central clusters. The mass cut-off is my = 0.7 GeV and the
parameter b is 1.5 GeV-1. By integration over # in the range

o (30) o n2

it follows that the mass distribution is

F (”)(11, m, s) = 4.4)

_d_a ~ (m—my) exp | —b(m—my)] 4.5)
dm

(see also Ref. [9)).
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We have computed numerically the graph with two leading protons and one central
cluster, corresponding to Eq. (3.8), where two meson-trajectories are exchanged (o, =
= 0.5+1). Of course we cannot expect a full correspondence of an exclusive distribution
of one special graph with an inclusive distribution, but we should obtain an exponentially
damped distribution. For a mass dependence (m3)*® of the central cluster vertex function
an exponentially decreasing cluster mass distribution is not reached for &,(0) = 1.0 and
&,(0) = 0.5 in a reasonable mass range, for residue parameters 3.0 <C @ < 15.0. However,

with @,(0) = — 1.0 we obtain an energy independent exponentially damped distribution
=
\ p P
d6
g8 \\\ solid curves  dashed cums-z
\\ 1. G.Ranft, 3.Ranft a1=a5= 5 GeV
oL \ 2.5.Pokorski ,LVan Hove ay=ay=7Gey ™2
vt
04

04

+

i & CON
m{GeV)

Fig. 3. The mass distribution for a central cluster for two different parameters of the residue function in
comparison with the empirical functions of Pokorski and Van Hove [8] and Ranft and Ranft [7]

in the energy range /s = 20...50 GeV. With different parameters in the residue functions
the tail of both distributions (4.3) and (4.5) can be represented (see Fig. 3). The somewhat
arbitrary cut-off for small masses, which fixes the lowest possible cluster mass, is of course
not reflected, because this graph is only the first contribution to the full multiperipheral
chain.

42, The rapidity distributions

For central clusters Ranft and Ranft [7] (see Eq. (4.4)) and Berger [7] use a rapidity
plateau with a logarithmically decreasing height in 5. In the Thermodynamic Model the
rapidity distributions G(z, s) and Go(, s) are used far central and leading clusters, respec-
tively [1]. G(n7, s) has a central energy independent plateau for the energies under consider-
ation

(4.6

2m,, sinh
G(n, s) ~ exp [—a exp (1 —max)] (1 - J“__’?) ,

Nz

with ¢ = 0.208.
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Go(n, s) shows an increase towards the kinematical limits. We obtain this function
through transformation of the variables from function Fy(4), which was used earlier.

2my(coshn—1)]/2m, sinh n
Js—2m, Js=2m, )’

Go(n, s) ~ exp ["ao 4.7
with a, = 4.58.

The functions G(n, s) and Gy(n, s) are normalized to one cluster, so G(y, s) is not
in contradiction to a logarithmically decreasing inclusive distribution for central clusters.

4.2.1. The leading clusters

The rapidity distributions calculated from the single and the double diffractive graphs
according to Eqs (3.28) and (3.29) show an exponential increase with the rapidity towards
the kinematical limits for &(0) = ap(0) and d(0) = «,(0) (Fig. 4). This is in agreement with
the Thermodynamic model. The curves are energy-independent or reach a limiting distri-
bution at /s & 50 GeV. The parameter in the residue function has a weak influence on
the slope of the distribution in the range 2.5 GeV-2 < a < 7.5 GeV-2.

For the nondiffractive component, meson-exchange is considered with o, (t) = 0.5+

20
V3'(Gev)

P PP
!P + P
, p——p

- -
2 L]

Fig. 4. The rapidity distribution for a) a single diffractively produced cluster ;(0) = 1, a; = 3 GeV-?,
b) a double diffractively produced cluster #,(0) = &,(0) = 1.0, a; = 3 GeV-?
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The rapidity distribution obtained from Eqs (3.28)-(3.30) with &(0) = «p(0) and &0) =
= 0,,(0) shows an energy-independent plateau at the kinematical limits. Two examples
are shown in Fig. 5. Because of kinematical constraints, the plateau in Fig. 5a is broader
than in Fig. 5b, where an additional central pion is produced. In this case we do not obtain

an | P P P
0 p
v
20 30 4050

Vs'tGev)

-2
0 i 1
2 472
a

F:
p P P T
n
z ™M
dr p P p
¢t — 102+
vt 0! r-
2 /30/ 40f50f VSiGeV}

2 30 4050 YS(Gev}
n? 1 J U
2 4
b 72 b ”2

Fig. 5 Fig. 6
Fig. 5. The rapidity distribution for a leading non-diffractive cluster with a) &(0) = 1.0, a; = 3.0 GeV-?,
b) @(0) = 0.5, a, = a; = 5.0 GeV-?
Fig. 6. The distributions of leading clusters with z(0) = —1, a) a, = 3.0 GeV-3, b) a; = g, = 5.0 GeV-2

a leading particle effect. If we choose 4(0) = —1 we obtain towards the kinematical limits
an exponentially increasing rapidity distribution (Fig. 6). These distributions are preferred
in comparison with the Thermodynamic Model.

4.2.2. The central clusters

Here also the graph with two leading protons and one central cluster is considered
(Eq. (3.31)). For &,{0) = 1.0 or %,(0) = 0.5 the rapidity distribution has no plateau.
The results are shown for &,(0) = — 1.0 (Fig. 7). In this case we obtain a plateau in the
rapidity with a somewhat stronger than logarithmically decreasing height with growing
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107

VS (GeV)

A i 1
17 2 3 n

Fig. 7. The rapidity distribution for a central cluster with ;(0) = ~1, (4, = g, = 1.0 GeV-?)

energy. This may be an indication, that the contribution of this graph to the full multi-
peripheral chain decreases with increasing energy and graphs with more than one central
cluster become more important.

5. Discussion

We have computed mass and rapidity distributions of clusters for various graphs.
We have tried to put some constraints on the multiperipheral production mechanism of
these clusters, which follow from comparison with some empirical functions.

The diffractive component is obtained in accordance with expected curves or triple-
-Regge fits [24], but with a careful kinematic treatment we are able to give the relevant
mass range for diffractively produced clusters. For double diffractive events we predict
a mass distribution (Eq. (3.5)) as well as a mass distribution for asymptotic energies
(Eq. (4.2)). The diffractive component is determined by P-exchange and a vertex function,
which increases as a power of the cluster mass.

The non-diffractive component is dominated by meson exchange and a vertex function,
which decreases as a power of the cluster mass. This result is in agreement with the results
of Hamer [16] and of Basetto, Ranft and Ranft [17], who use different argumenis, such
as Froissart-limit and Feynman-scaling. Since we have related the squared of the vertex
function to the foreward scattering of two Reggeons, it should be equal to the product
of two triple-Regge couplings G, 4, q0)-

According to triple-Regge investigations for these couplings the MMP-term gives
the main contribution to the non-diffractive events [25] (but only for a single leading
cluster and x < 1). The conclusion would be &0) = 1 in contradiction to our and the
above mentioned results. With a negative &(0) we are able to reproduce the empirical mass
and rapidity distributions used in some models. It should be stressed, however, that we
have calculated only some exclusive graphs. In particular we only. have treated the first
approximation to central cluster production. Our results and their comparison with the
expected features give us some confidence that the treatment of the full multiperipheral
chain for cluster production will not alter these features considerably.
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