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Geometrical scaling connects, at 7 = 0, the phase of the pomeron amplitude F(s, t) to
that of its derivative 0F(s, ¢)/2¢. This intrinsic phase correlation allows one to derive a disper-
sion sum rule relating the high- and low-energy regions.

Within axiomatic field theory it was shown few years ago [1] that, if the total cross-
-section of a process grows like In?s, the scattering amplitude F(s,t) exhibits a scaling
property

F(Si’ t)/F(Si’ 0) —*f(‘f)

for [¢| < const/(Ins)? and for a sequence of energies s; tending to infinity. Here 7 = tin®s
and f(7) is a nontrivial entire function of order 1/2. A phenomenological extension of
this scaling property for a,,(s) rising slower than In?>s was suggested [2] and subsequent
consequences of the so-called geometiical scaling (GS) for the pomeron amplitude have
been presented by Dias de Deus [3]. In particular, from GS he has obtained the following
fixed s, t-derivative analyticity relation

ReF(s,f) 0 , Im F(s, 1) 0
ReF(s,0) ot| ImFs,0) ]
As a consequence of this equation one gets in the forward direction
Re F'(s, 0 Re F(s, 0
(5.0 _ ¢ F5, 0) s large. @

Im F'(s,0) ~ Im F(s,0)’

In what follows we make use of this specific relationship between the phase of Fi(s, 1)
and that of F'(s,t) at + = 0 by deriving a dispersion formula which could prove to be a
sensitive test for the parametrizations of amplitudes satisfying GS.

* Preliminary version of this paper was presented at the Symposium on Hadron Scattering at High
Energies, Liblice/Prague, June, 1975.
** Address: Instytut Fizyki, Uniwersytet Jagiellofiski, Reymonta 4, 30-059 Krakéw, Poland.
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If GS holds true the pomeron amplitude F(s,f), s <>« crossing symmetric, should
have the following stiucture [3]

F(s, 1) ~ isR? (§~—i%) #(RY), E=1Ins,

for fixed ¢ and large 5. The functions R* and ¢ are “real” analytic functions; normaliza-
tion yields ¢ (0) = 1. Now we assume that, according to the current trend of experimental
data [4] for g.(s),

2 in A
R 5*5 ~ const 5—17 , O0<p<2 (3)
Simple algebra gives then
Re F'(s, 0) 5 Re F(5,0) _ImR* ImR* 7

_ _ ~te P 5P 3
ImF(0) “ImFG0) 2 ReR®  ReR® ~ 8“2y =a(hny’ (&)

Thus with the specific assumption (3) we get more detailed information about the asymp-
totic equality (2). Relation (4) is crucial for the derivation of our final result.

For definiteness let us consider the scattering of pions (mass m) on protons (mass M).
It is convenient to replace the crossing symmetric scattering amplitude F(s, ¢) by

G(s, 1) = F(s, 1)~ Fy(s, )= F(sg, )—7y, 7> 0,

where Fy(s, t) stands for the Born term and s, = (m+M)>. Due to the positivity of
Im F(s, t)tor s > soand r == 0 and our choice of y we can easily show that G(s, ), analytic
in the cut s-plane, has no zeros. Therefore, introducing the symmetric variable v = (s —u)%/4
= (s+1/2—(m*+ M?))?, we get

\/v—vo_ 1 dzx/z—vo

G(v,t) 2mi [ (z—v)G(z, 1)’
the integration contour is shown in Fig. 1.

For s = s, this equation reduces to

vo = (t24+2Mm)?; (%)

. ds[s+1/2—(M?*+m*)]Q(s, 1) é;
4 -+ = 09
” VIs+1—(M=m)’] [s— (M +m)*]

(M+

where Q(s, 1) = D(s, 1)/[D*s, 1)+ A%(s, )], D(s,t) = Re G(s,t) and A(s, 1) = Im F(s, 1).
Differentiating both sides ol this equation with respect to 7 and keeping r large but fixed
we get in the limit # - 0

Ty

r

M dsQ(s, 0)

" J‘[»4M+me%wwM—mYT“
(M +m)?

r ds[s—(Mz+m2)]§ZQ(Sa Dle=o a

+0(1/7).

t=0

4 J =~Ejﬁﬂ_
[(s—(M—m)?) (s—(M +m)*)]"* ot J R?*&(tR?)
Q

(M +m)?
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Fig. |. Integration contour used in the derivation of Eq. (5)

Remembering that in the infinite eneigy limit the slope of the diffraction peak is given
by B(c0){20,,(0) = ¢'(0) we finally obtain for r - w

o

y ds0(s, 0)
" J [s— (M +m)?]"2[s (M —m)* T

(M +m)?

o
~

+ ds[s—(M +m)*]Q'(s, 0) B
J [(s—M~m)?) (s—(M+m)*)]">

(M +m)?

T B (@) ®

if the corresponding limits exist. There are obviously no problems with the first integral;
the second one requires more attention. Its existence is related to the convergence of

@K X

A'(s,0) [ D'(s, 0) D'(s,0) ,
st 225, 0) [A'(s, 0 —20(s, 0)] and ~[ds 717(—8’—0) 0°(s, 0), D

where ¢(s, 0) = D(s, 0)/4(s, 0). Note that

A0 0  #0
A%s,0)  s¢*0) s

This 1;s damping factor is not sufficient to ensure the convergence of the first integral
but the phase relation (4) helps. In a similar way we can show that the second integral
converges since we expect o(s, 0) = const/lns and lim,_ . D'(s, 0)/4'(s, 0) = 0. Finally,
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introducing as a new integration variable the energy of the projectile in the lab system
(s = M*+m*+2Mw) we get in a more symmetric form

O

dwQ’ (w, Ow dwQ(w, 0) _m B(e0)
4MJ Bz T j @ =) Pt m) 2 g ®

m

Due to our choice of s(= s,) Eq. (8) gives a presumably strong, non-local connec-
tion between the threshold and high-energy behaviour of F(s, 0). A similar relation can
be obtained for s > s5,, emphasizing the importance of different energy regions. In gen-
eral, the abundance of, e. g., 7N data from the threshold up to very high energies should
make a detailed numerical analysis of such a dispersion formula feasible.

So far, only the threshold value of F(s, ¢) and the Born term were subtracted from
the physical amplitude. Note, however, that all conclusions would remain unchanged if
the function G(s,t) were replaced by

G(s, —in[(s~so) (s+1—(M—~m)*)]'/?

with n small enough to not violate positivity. By varying # we can make the numerical
results sensitive to the behaviour of F(s, 0) and F'(s, 0) around, for example, the well
known high-energy dip of g,,(s) between 50 and 100 GeV/c [5]. In particular, it would be
interesting to investigate the problem of the Van Hove [6] unitary limit for the ratio
Bjo,,, which is not yet saturated for n N scattering (but is in the pp case {7]).

To sum up, we have derived a dispersion equality whose validity could perhaps
provide us with a useful information concerning the high-energy parametrization of the
scattering amplitudes. The obvious advantage of our costraint against the standard
dispersion relations in that, on one hand, it really depends upon the more subtle details
of the pomeron amplitude’s high-erergy structure on the other hand it tightly connects
the high- and low-energy domains.

Thanks are due to D. Robertson and J. Dias de Deus for helpful discussion.
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