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The eikonal scheme is used to investigate the elastic and inelastic scattering of two
charged particles. The t-matrix is found to be reproduced exactly at a// scattering angles and
at all energies both in the on-shell situation and for i > 1 in the half-off-shell case. The result
is a consequence of choosing the direction of the eikonal approximation and the pole of the
eikonal free Green function in a particular way so as to depend on the scattering angle.
In situations where the Sommerfeld parameter 7 (= zZe*(#v)~" is large, as is a feature of
heavy ions, analytic formulae are obtained for the #-matrix corresponding to scattering by dis~
placed charges. The agreement with the exact result suggests that Coulomb excitation can
be treated in this manner. An analytic expression is obtained for the derivative with respect
to the nuclear charge of the Coulomb-excitation matrix element and the DWBA formal-
ism is then used. The final result can be put in terms of integrals over the charge of ex-
pressions involving the half-off-shell r-matrix. The calculations refer only to single-step
processes.

1. Introduction

The phenomenon of the scattering of two charged particles was first considered from

a quantal viewpoint by Wentzel {1] and Oppenheimer [2] whose estimates were based on

use of the first Born approximation. Exact treatments by Mott [3] and by Gordon [4]
lead to an additional phase factor in the f-matrix

exp [in+2iarg I'(1+in)], (LD

where n = zZe? (hv)~! is the Sommerfeld parameter associated with charges ze and Ze
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which move with relative velocity v. Gordon [4] also allowed for a screening radius R
and showed that this gives rise to an extra factor

exp [—in In 2moRh™1)]. (1.2)

This factor was however ignored; but it does lead to apparent divergencies on expansion.
Dalitz [5] in fact, studied the divergent parts of the first three Born terms and surmised
that the exponential factor (1.2) can be built up through the Born expansion and this was
confirmed by Kacser [6] who calculated these terms exactly. The factor is known [7}
however to be of little physical significance in the analysis of any specific measurement
and we shall therefore ignore it in our calculations.

Adopting the eikonal scheme, we show in Sect. 2 that the exact quantal result is
reproduced provided that the linearization, characteristic of the eikonal approximation,
is taken to be normal to the direction of the momentum transfer and in the scattering
plane. Also, the pole in the eikonal Green function must be given a particular dependence
on the scattering angle. We note the agreement holds for all scattering angles and for
any energy (neglecting relativistic features), as was shown earlier by Glauber [8], but in
a somewhat restrictive fashion. It was also re-emphasised by the work of Moore [9]: the
factor (1.1) is however lost in this work. The work of Wallace [10] runs parallel to our
investigation. This investigation is accomplished by comparison, term by term, of a Born-
-series expansion while our method is to compare the final expressions for the s-matrices.
Our conclusion is the same.

Sect. 3 allows for a displacement r of one or two charges in the target. The expression
for the r-matrix splits naturally into an outer and inner portion, associated, respectively,
with impact parameters larger and smaller than jr, | = 5. The expressions involve an
infinite series of generalized hypergeometric functions of the ,F, type. Great simplification
obtains if # > 1. The inner portion of the scattering amplitude is seen to be negligible
and the outer portion deviates from the quantal result simply by the presence of an extra
multiplicative factor exp (is - 4), where 4 = k,—k, lies along the direction of momentum
transfer.

Off-shell effects are dealt with in Sect. 4, first by evaluating the half-off-shell t-matrix
for Coulomb scattering between two charges in situations where # » 1. Comparison is
made with the exact expression set out by Ford [11]. The method is to assert equality of
the modulus of the derivative of the 7-matrix element with respect to Z, the charge number
of the target in the two cases. This leads to evaluation of a parameter specifying the eikonal
direction. In this we require the solution of a transcendental equation applicable to differing
momenta and angles.

The procedure logically extends to Coulomb-excitation phenomena where n values
are characteristically large. Guided by the equality of the eikonal expressions with exact
results in the case of elastic scattering, we expect the validity of the eikonal treatment to
apply when charges are slightly displaced. We outline in Sect. 5 a technique based on the
distorted-wave Born approximation which avoids the need to introduce partial waves.
Using the values of a quantity, p, which relates to the deflection of the eikonal direction
from that in the elastic scattering case and which is determined by the half-off-shell



situation, or by any other means, we arrive at an expression for the derivative of the
t-matrix with respect to the nuclear charge. Numerical methods must be applied towards
evaluation of this expression; but the smaliness of the g-value leads to the possibility
of expressing the Coulomb-excitation f~-matrix simply as an integral over the charge param-
eter of a quantity involving the half-off-shell exact r-matrix. The numerical is in the pro-
cess of being done.

This procedure enables us to handle Coulomb excitation to first order. We indicate
a small modification which extends the analysis to consideration of the reorientation effect
and this is discussed in Sect. 5.

Sect. 6 summarizes our findings.

2. Evaluation of the exact t-matrix for two point-like charges

We designate the Coulomb potential as the limit of a Yukawa interaction:

V(r) = lim exp (—pur)zZe*r*, 2.1
u-0
where p—! plays the role of a screening radius. The r-matrix is evaluated by summing the
infinite eikonal Born series

t = —2r)’mlk |V —=VG,V+VGVGoV — ... ik, (2.2)

where m is the reduced mass of the interacting particles, f is set equal to unity and G,
is the eikonal form of the free Green function G,, which is approximated as

Go = [m™ 'k (p—k)+8(E)—ie] " = [m™ 'k(p; —K)—~ie] "". 2.3)

Here, k is the vector characterizing the eikonal approximation and p is the projection
on k of the operator p which depicts the relative motion of the projectile and target.
The quantity 6(F) denotes the shift in energy which, besides the constant shift k*(2m)~! —E,
includes an additional term representing in some way the omitted operator (p— k)*(2m)—*.
The constant shift vanishes in the case of elastic scattering. The eikonal approximation
depicts the latter term as a c-number with some dependence on the scattering angle 6
but not on p. This dependence reflects on recoil corrections which should be more
important at large angles. Some attempts [12] have already been made to represent 6(E)
in the context of the Glauber formalism in applications to scattering off deuterium, where
the results are expressed in terms of recoil and Fresnel corrections.

To reproduce the exact quantal result for the r-matrix, by summing the infinite
series (2.2), we are led to define k as being in the scattering plane and satisfying

kL A=k —k), |kl =(@2mE)'?,
and

k=4k -k, k=kk . (2.49)
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This then determines k uniquely. Thus,
k = mE)"*[k;+i(k;, kg3 00k ] i+ Ak, ke ps )k |72,
Mhiy kp; 0) = (ki—k; kp) (kj—k; - ko)™t (2.5)

We show in Sect. 4 that the expression determining the direction of k also applies for
inelastic scattering, but only if # > 1; the magnitudes k; and k, are naturally unequal
in such cases. The finding is that the component of (k,—k;) along the direction of k is
small compared to the perpendicular component and the direction is approximately
expressed for large values of n by Eq. (2.5).

In the case of elastic scattering,

l(ki, kfa 0) = 1,
w(ki, k;;0) = k; -k = k, -k = 2mE)""* cos 1 0. (2.6)

We note that the deviation of x from k = (2mE)? is largest at 180°, in keeping with the
notion of recoil corrections. The eikonal Green function is then rewritten simply as

G, = m™'2mE)"*(p, —(2mE)'"* cos ~ 0—ie)™", Q.7

where E denotes the relative energy in the centre-of-mass system. The pole in G, is seen
to be angular-dependent. We also notice that the above equations ensure the symmetry
of the t-matrix with interchange of entrance and exit channels.

The differential cross section (do/dQ) is given by |¢|?, which is calculated in a conven-
tional manner by introducing its Fourier transform and evaluating the Born-series term-
-by-term. Allowing for the fact that k;; and k each equal , as is evident by Eq. (2.6), we
find

= —ik lim Of bdbJ(b4) { f [—2inKo(ub)]"(m!)™~ " ~1}
p-+0 O m=0

= —ik lim 050 bdbJo(bdA) {(ub)2"—1}, (2.8)

n—0 0

where use is made of the fact that
KO(Z) ﬁ ~In z. (2.9)

This conforms with Glauber’s expression for the ~matrix. With the use of a conver-
gence factor covering the integration over large values of b, as outlined in Appendix A,
we find

2nk (2u\*" ;
t = _limi(—“‘) ) (2.10)

This result is not applicable to forward scattering, as we have ignored the unit term on
the right-hand side of Eq. (2.8) and the implications of this are felt only at zero degrees.
Following Gordon’s procedure, the screening factor

lim exp [ —2in In (kp™")] 2.11)

p—0
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is ignored and we finally are led to the result

n 1 2+ 2in iy o

11 0 P LA S, fargl{ +m)' 2]

©) 2% (sin 9) ¢ (2.12)

This is the familiar quantal result for elastic scattering, earlier derived in Ref. {4, 5].
Had we expressed G, more generally as

Go = [A(p)—B)—ie] ™", 2.13)

we should find that the values of 4 and B are precisely what is set out in Eq. (2.7) if there
is to be detailed correspondence with the final result. Wallace [10] did, in fact, arrive at the
same result by demonstrating the equivalence of each term in the Born series with the
associated quantum expressions. Our method is somewhat more direct. This starting
point is based on Eq. (2.7) which further corroborates the choice of G,.

The quantal result obtains independent of the values of k and 0, aside from forward
scattering; but this hinges on k being chosen so as to be normal to 4 and by making the
pole term be angular-dependent and equal to (2mE)* cos 16. Corrections to the eikonal
approximation fail to appear on account of the infinite range of the Coulomb interaction.
The feature was stressed early by Moore [9]. We note that our approach is not confined
to the sole use of straight-line paths since the various terms appearing on the right-hand
side of Eq. (2.2) each contribute to the scattering amplitude and the distortion of the state
of motion. Even if we contemplate straight-line paths along a direction of linearization,
this direction changes with angle and the result is non-linear motion. Nor is our method
easily related to the WKB treatment for we make no use of the notion of a trajectory.

3. Scattering by one or several displaced charges

We first consider a target situated at the origin but with a charged portion of charge
ze centred at a point r. We view as being point-like both this portion and the projectile
with relative coordinates r,. The Coulomb interaction is then

zZe?
V(r, r) = lim — e o=t (3.1)
u=0 [Py —F|

Following the procedure as outlined in Sect. 2 we find, for a fixed value r, that the
on-shell #matrix is given by

t, = —ik lim | bdbJo(bA) [{u(b®+5>~2bs cos ¢)!/?}*"—1], (3.2)
u—+0 0

where s = r, is the projection of r in the impact-parameter plane which is taken to be
normal to k as defined in Eq. (2.5). The angle ¢ is the angle between 4 and s as measured
in the impact-parameter plane. Choosing a proper convergence factor, as outlined in
appendices 4 and B, we calculate for 6 % 0, using the expansion

) T(L+in) (=2 cos @)'(bs)'(b> +s%)"~"
b%4s5*—2b. "= - 3.3
(0757 =2bs cos 9) _j_ , I(1+in—nn! 89

n=0
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and find

t —(zﬁk)“{(i %9)“2—2?:2r(1+i'?)r(1_%m+in)(—sd cos )"
, = (2i sin I +in—mmirG m—in)

m=0

x (Fo(m—in; 3 m—in, 3 m—in; (3 4s))
+(sk)? 2 Z I(L+inI(1+3 mI'(3 m—1—in) (=2 cos ¢)"
I'd+in—mym!I' (m—in)

m=0

X Fo(l+im;2—im+in, 1;(% As)z)}. (3.9
The p-dependent phase factor met in Eq. (2.11) is ignored.

Eq. (3.4) splits naturally into an “outer” and “inner” contribution. Only the former
term survives as s tends to zero, in which case ¢, reduces to what is given in Eq. (2.12).
We therefore classify the first term as the outer term. We can check that the second term
is associated with low b-values, by expanding the binomial term in the right-hand side
of Eq. (3.3) and by calculating the integral in Eq. (3.2) from & = 0 to b = 5. The structure
of the result is found to be similar to the second term.

A similar feature obtains in situations in which the target is composed of two point-like
charges separated by some displacement vector. Again, there are both inner and outer
contributions.

Particular simplicities follow in situations where 7 is large. This is a feature of many
heavy-ion reactions. As an example, we cite the process in which oxygen ions are incident
on lead. The n parameter is, in this case, near 50.

Utilizing formulae such as

VF(z+(x) _
I'iz+p) h

271+ 0(z17Y],  argzi <, (3.5)

and applying similar approximations both to the other gamma functions appearing in
Eq. (3.4) and the functions ,F,, we find ¢, is given by

L . 1
tr —_ (l (sin% 0)—-2—2me213rgr(1+u1)e1s-A 1+0 -
2k ]

o0

n'/? 2+2in [exp (—% mi)n'/? cos ]" 1
2k O rG+im [1 +0 (,;)] : (3.6)

m=

+

The outer contribution is essentially the Rutherford result (Eq. (2.12)), except for
the presence of an additional factor

exp is - A. 3.7
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The inner contribution is expected to be negligible for large n-values, owing to the
highly oscillatory parts involving the product sk. It is not clear however how to sum analyt-
ically the m-dependent term in Eq. (3.6). In dealing with a target composed of two charges,
we find the inner contribution is, indeed, negligible.

The appearance of the factor (3.7) might be anticipated by the following argument:

—ik j' bdbJo(bA) [u(b* +5*—2bs cos ¢)'/**" = —ik(2r)~" | d*b exp (ib - 4)
)

x (uib—s)™ = —ik exp (is - 4) (J) BdpJo(B4) (uB)™™, (3-8

so that the effect of a displacement equal to s is to multiply the #-matrix by the factor
(3.7). Caution must be given here owing to the need to include a convergence factor, as
discussed in appendices A and B. A simple shift of variables fails to lead to the above
result owing to the modifications needed for small b-values. These clearly are associated
with the inner contribution. -

Alternatively, we might account for the shift by s by introducing translation opera-
tors exp (—ik; * s) and exp(—ik, - s) which operate on the eigenfunctions depicting relative
motion in the entrance and exit channels respectively. Once again, the factor (3.7) is
obtained; however care once more is needed if b < s.

4. Inelastic scattering

We apply ourselves to inelastic scattering in the Coulomb field, dealing first with
the half-off-shell r-matrix. It is opportune that the exact result is available in the form
given by Ford [I1]

Lexact = —2(2nni)1;2kiniiki_kfl -2{(ki2“‘ ki’) |ki—kf|—2}im eXp {i[% n+n;1n (n,e” 1)]},
4.1

which is valid for situations where k; < k;, as obtains when scattering off stable nuclei.
We omit, for convenience, the factor ;*™ since it is not considered in the case of elastic
scattering.

In determining the pole for the eikonal r-matrix, we insist, as in the case of elastic
scattering, that k;, be equal to x. We introduce new parameters 6, 4 and ¢ which bring
out the inelastic-scattering character

lkfumkilll =9,
ikjl“‘kill = A’
0= |k“—~k,-ll"1 kg, — kil = 5471t 4.2)

The p-parameter is dimensionless, vanishes in the elastic limit and is plainly dependent
on the scattering angle. It plays a cardinal role in the determination of the eikonal ~-matrix.
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Following the procedure outlined in Sect. 2, we find

teik == _2’11ktlkl—kfl_2+4”71kt j‘ bdeO(bA)
[¢]

x Ko[blks,—xi1] 3, Qin;In b)m[(m+2)!]-1K0[b§k,-”—KI]. (4.3)
m=0
Taking into account Eq. (2.9), this leads to

e el

teik == —2?1,k,.k,—kf]_2——2}1,k, X bdeo(bA)Ko(bé) (Zi}’], In b)"?+1[(7?’1+2)!]_1.
] 0

(4.4)

The latter integral does not lend itself readily to calculation. Rather, we calculate
the derivative of 7.;, with respect to Z, the charge number of the target, bearing in mind
that both »; and #, are proportional to this number. Then

m=

o]

— tei = ~2?ik,~Z—1£ki—k _2—2 ikiZ—l
oz, K (i T 7l n T

x? bdbJ (bA)K(bS) 2 Qin; In BY"™ [(m+D!] ™
o 0

0=

= k27! (j) bdbJ (bA)K o(bS)b*™™, (4.5)

The latter impact-parameter integral is calculable analytically f15]. In limiting situ-,
ations where #; > 1, we find

~

o = 2kgZy ()P e — kgl T2
0Zy 7> 1

x (o ¥ 4ip* V) exp [—2n; tan™ ! p+2in; In 2ne” Y] (4.6)

Noteworthy is the presence of the factor |k;— k,[-2-*" which also appears in the case of
elastic scattering.
The demand that for 5, > |
0 t
6ZT etk

0

9, 4.7
aZT exact ( )

leads to equivalence of ¢, with 1.,,. as expressed in Eq. (4.1). This result is established
in the following way: We note first that the exact expression, as given in Eq. (4.1), is
expressible as

texact = R exp 1¢’
R = An}"? = 202m)' *kmi? |ki— kg2,
@ =357n+n;In {ni(kiz—k;) iki—kf‘;‘ze_l}. 4.8)
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Then,
Ti" texact = A'lts/zz;l[%'i' ”11 In {’7;(’(12 _k;) lkt—kflﬁz}] exp l(])
ULt
= QAZ7 '] In {n(k} — k) ik;—kgi~*} exp ig, 4.9)
ni»1
whence
—(z_ texact = R’?rZ;l In {nt(k?—k}') lki_i(fl_z} = ltaxactl i @. (4'10)
(7ZT aZT

It is noteworthy that the phase in Eq. (4.8) contains the logarithmic term with argument
proportional to ¢! and that this disappears on differentiating with respect to Z,. The
modulus of ¢, is, in fact, independent of the logarithmic term although this is not the

62; Lexact

If we reverse the procedure and attempt to derive the r-matrix element knowing its
derivative with respect to Zy, the combination 5, Z7' In(ij,e~!) must be associated with
the phase, otherwise difficulties would arise from the term »,Z;' ln[rzi(kiz—k})] if we
extend the solution to the elastic limit. This feature allows for a determination of both
the magnitude and phase of the f-matrix element using knowledge only of the modulus
of the derivative of the matrix element.

Insisting that Eq. (4.7) be valid, we find that ¢ must satisfy the transcendental equa-
tion

case with

.

(1+0%)0 ™" exp (—4n; tan™" 9) = 297 In® [n(k? —kDlki—k ;7 %]. (4.11)

1t is clear that ¢ must be very small. Moreover, it vanishes in the elastic limit, as is to be
expected. The #; in Eq. (4.11) should be understood as a large, but fixed parameter.

Writing t.;,, in anology with Eq. (4.8), as
te = Rexp (i), (4.12)

and presuming, as in the exact case, that

0 -
— CXP I
oz, P17

R >

R, > 1, 4.13
0z, i > (4.13)

the modulus of the derivative of f;, equals the product of R and

¢. Associating the

0Zy
derivative of the phase with the logarithmic term and identifying as in Eq. (4.10), the

values of R and ¢ are found to be
R = 202m)"*k)\ki— ksl 1",

¢ =4n+nn {'f:’(kiz"k}) Eki—kf}_ze]- (4.14)
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We thus deduce the equality
teik = Texace> n > 1 (415)

for arbitrary values of k;, k, and scattering angle provided that the Sommerfeld param-
cter is large.

5. Coulomb excitation

One application is to inelastic scattering by displaced charges in the Coulomb field
and, in particular, to single-step transitions associated with Coulomb excitation. The
method hinges on application of the DWBA formalism which utilizes knowledge of the
Coulomb distorted eigenfunctions y.(k;, r,) and x.(k, r,) which depict the relative motion
of the two channels. The interaction Hamiltonian describing the relative motion of a
point-charge projectile in the field of a charged nucleus is

2 =1 2.1 : 2 =1 2. -1
H = Zge ir,—ri"" = Zye'r, +iZpeir,—r = —Zge'r, |, (5.1

where r, is the vector connecting the projectile and the nuclear centre. The charge in the
target is considered as being displaced by the vector r. The splitting of the Hamiltonian
into one part which generates the distorted-wave eigenfunctions and into a residual term
depending explicitly on r is characteristic of the DWBA procedure.

The DWBA expression for the transition amplitude is given by

TRYPA = (@) 154 () p(r), (52

where

15 M) = = Q) mly ks, 1)) 120 (1= 17 =1 ") [alkss #,))- (5.3)

The fact that tlf)iw BA (¢) depends on r leads to the possibility of inelastic transitions between

target states |g;(r) > and |@ (r) ). The simplest interpretation is that r be viewed as a dynam-
ical operator, as one meets in the characterization of vibrational-like nuclei, for example.

The reduced matrix element 15" >*(r) splits into four terms
170 oA (r) = [P0 — 15+ [P () — 121, (5.4)
where

£0(r) = —Q2r)’mdk, \V,(1—-GyV,+GLV,GoV,— ...) Ik,
10 = —Qr)P*mik V(1= GoV,+GoV,Ghv,— ..) kD,
12(r) = —Qn)’mlk V(= G+ GEV, Gl — )V, (1-GhV,+GhV,GhV,— ..) kD,

(2 = —Qn)mik VI~ GL+Ghv,Gi— . OV,(1=GoV,+GoV,GoV,— ..) 1k, (5.5)
where
V, = Zge*ir,—rl"",  V, = Zsetr; ", (5.6)

and the superscripts, associated with G, specify the channel energies. Both Green func-
tions are of the form given in Eq. (2.7).
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Our method is to calculate +{(r) in terms of ¢} and ¢ (r) in terms of #{?. The
quantities %}’ and ¢} are just the half-off shell #-matrices and their expressions are given
as in Eq. (4 1. In calculating t}? (r) for example, we proceed as in Sect. 2 and find

iz £2(r) = —2nk,Z7" exp (—iryo) j bdbJ o(bA)K[(b*+5>—2bs cos ¢)!/28]b*™ (5.7)
T

where 7| = r- k,s= (r), and ¢ is the angle between r, and (k,—k)),.
The calculation of the impact-parameter integral is sketched in appendix C. The
final result is simply put. One merely alters the quantity ¢ as it appears in t‘” as follows:

8-> 8[l—ntr (k;~k),]"* (5.8)
with the understanding that 4 is unaltered. Recognizing that
4 = (1+0")" ki,
6 = o(1+0%) ™2k, —ki, (5.9)
the transformation reads
lky— kil = [kp =k [1—0*(1+ 0% "0 ' - (kp—k) | ] (5.10)

This can be applied to Eq. (4.1) and takes a fixed value #; if n > 1.

The smallness of the g-value, as is implicit by Eq. (4.11), suggests that jk,—k;|? is
essentially unaltered by the above transformation. Consequently, the following approxi-
mate relationship holds as long as > |:

d
t‘,‘,’( ) = eirné 5z ik (5.11)

where 7.;, may be equated to t,,, as given in Eq. (4.1). Integration of Eq. (5.11) leads to

Zr
{1) : a —~iryd
tfi (") = eXp (_ ”“”5) Ay (texact)dZT =e " Lexact - (512)
0Z;
In performing the integral, we suppose that t(”(r) tends to zero for small values of Z;.
We further make the expansion
exp (—iry ) = 3 (—ir)eHLN™! (5.13)
L
and we restrict ourselves to specific multipolarities. The usual case corresponds to quadru-
pole excitations (L = 2). From Eq. (5.9)
o" = oMk, —ki|", (5.14)
and a rough estimate based on Eq. (4.11) leads to
bk -k "[207 In® {n(k? —K7) [k~ kil 23] R (5.15)
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A proper solution of Eq. (5.11) is best obtained numerically and we hope to report
the results when ready. The solution for ¢};"?*(r) does not require evaluation of ¢} and
t}z) as these do not contribute to inelastic processes. Nonetheless, the evaluation of t‘z)
does point to the form of t(z)(r) Thus, considering 7{}’as it appears in Eq. (5.5), we evalu-
ate the matrix elements of G, by introducing the Fourier transform of ¥ as in the elastic
case. With the help of Cauchy’s theorem, we find each of the ¥V -factors that occurs between
Green functions brings out the factor 2y;In b while the V,-term between the last G
function and the first G} function introduces the quantity Ko(b3). The final expression
which is valid in the eikonal scheme is

13 = —2nk, 6\. bdbJ(bA) ZO (2in, In b)"" ' Ko(bd) ZO Qin;In bY'[(m+n+2)1771

(5.16)

9 2in, In bY™*1(2in, In b)"
0@ = o k,z bdeo(bA)K (bé)z Z( My 1o D" Qincln b)
0z’ (m+n+2)!

and

= —2nfku;1 g’ bdbJ (bA)K(bJ) Z; Qin I BY?(p)™" Y. (s - {5.17)
p= n=0

Summing first the geometric series and utilizing the fact that

nik: = ngky, (5.18)
we are led to

0
— D = — 2y kk [ Z (ki — k)] ) - 1(n)),

az
I(n) = [ bdbJo(bA)K(bS)b*™, (5.19)
()]
and therefore that
2) - 4 4
157 = kk,— kf) [teik(ﬂf)]_ — [team)] |- (5.20)
0Z; T 0Z

The expressions for ¢.;,(n;) and 7., (n f) simply differ by the need to introduce quanti-
ties o and g, respectively, which satisfy the same equation Eq. (4.11) except for an inter-
change in the suffixes / and f in the latter case. Following the procedure used in Sect. 4,
we find

12 = 2021) 2ki(ki— k) ki—k ;7% exp (5 mi)
i J 4

ﬂf(k kf) . ni(k? —k;)
X {km;/z exp [uyf In —|k——k—fT —kn'? exp | in; In ke )| (5.2

a
t2(r,) = e "0 — 13 (5.22)

0Zy 0Zy
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and the procedure based on Eq. (5.12)-(5.15) leads to evaluation of #{}’(r). The rough
estimate leading to Eq. (5.15) suggests the dependence of the differential cross section on
{k,— k;|*" 7% 92" with consequent isotropy for E2 transitions. This feature is approxi-
mately the case in the backward hemisphere particularly for small Q-values.

The procedure outlined above extends to multi-step phenomena. In particular, the
two-step process leads to matrix elements of the type

<Xc(kfa rp)l (Vr_ Vp)Gg(Vr“ Vp) IXc(ki’ yp)>9

where G} is the propogator associated with the intermediate state. Besides the contribu-
tion from nuclear interactions, there are the specific electromagnetic effects. We can study
the re-orientation effect which is associated with transitions between magnetic sub-states
in the final nucleus. Such matrix elements are evaluated by calculating the second deriva-
tive with respect to the charge of the target. The resultant expression leads to a generaliza-
tion of Eq.’s (5.7), (5.17) and the simplifications applying to the calculation of t‘f’, r)
apply here as well.

6. Summary

One of our main results is that the quantum scattering amplitude is reproduced in the
etkonal scheme for the Coulomb interaction between charged particles. This is so provided
that the eikonal vector lies in the direction normal to the momentum transfer, but in the
scattering plane. The pole of the free Green function changes with the scattering angle 0
and it is set equal to k cos 1. We can allow for discrete distributions of charge; but the
procedure becomes complex if there are more than three of them. The amplitude splits
into an inner and outer part; however only the latter needs to be considered if the Som-
merfeld parameter is large and it differs from the Rutherford result simply by an extra
multiplicative factor of the type exp (is - 4).

Exponential factors of this kind can be associated with the structure of target, as in
the case of a nucleus subject to strong collective excitations. The vector s is viewed as
a dynamical operator linking different excited states up the target. We have ignored
specific nuclear distortion effects. The eikonal technique has been extended to allow for
nuclear interactions in connection with charged composite objects scattering on each
other by Czyz and Maximon [16], Dar and Kirzon [17] and Kujawski [18].

Our method also applies to atomic physics phenomena involving the impact of elec-
trons or positively charged projectiles on hydrogen and on the helium atom. Here, we
possess exact knowledge of the atomic wave functions and we perform explicit integration
over the internal coordinate s. The equality with the exact quantal treatment at all energies
and angles helps explain successes already reported [19].

Our eikonal treatment extends readily to inelastic scattering and in particular to the
half-off-shell case for y > 1. Again, for this, the eikonal direction must be chosen specifi-
cally and the pole depends on the scattering angle in a way close to the situation for the on-
-shell case.

This feature is used in treating Coulomb excitation. The method is analytical, but up to
apoint. There is need at the end that we calculate numerically certain expressions involving
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the half-off-shell -matrix; but no partial waves appear. The multiplicity of partial-waves
that contribute to conventional calculations of Coulomb excitation are not seen in the
final expression. The counterpart to the summation over partial waves are the impact-
parameters which are evaluated analytically. Our treatment is restricted to one-step proces-
ses with the help of the DWBA. The method readily extends to considerations of the re-
orientation effect; bur we reserve comment on this until completion of the numerical
analysis.

The treatment we give depends critically on the p-values that come into the calcula-
tion. The premise is that they can be evaluated by what is needed to reproduce the half-
off-shell result for inelastic scattering. It is not clear though that the f-matrix for Coulomb
excitation, which involves a dynamical change from k; to k, in the presence of the nuclear
interaction should relate to the half-off-shell -matrix which does not involve any nuclear
interaction. If, indeed, the nuclear interaction must be brought into the calculation for
this should be apparent from our numerical calculations. We might then treat ¢ as an
adjustable parameter; but we leave this matter open until calculations are made.

One of the authors wishes to acknowledge the support given to him by the Science
Research Council and the hospitality shown him by the Department of Physics during
his stay at Manchester University.

APPENDIX

A. The solution of the impact integral for the interaction between point charges

We consider the impact-parameter integral
(j) bdbJ ,(bA)b*" (A1)

which is a special case of an integral described by Watson [14]. To deal with (A1), we
introduce a convergence factor and calculate

lim § bdbJo(bA)b>"e . (A2)
Re:ig 4]
From p. 711 of Ref. [15]
v Sl ocaxg v I(p+v) . i
j.JV(BX)x" Ay = (4 B (@ + I vy i3 (), 3 (L—ptv);
0
14+v; B2 +8D7'],  Re(u+v) > 0,Re (a+if) > 0. (A3)

Following appropriate substitutions we find

lim  § bdbe™®Jo(bA)b*" = I'(2+2im)Ad™* ">, F (1 +in—%—in; 1; 1)
Rea>0 O
a—0

= I'Q+2inA~ 272" 2~ (—ipr~'G +in).
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Using standard identities related to gamma functions, we find, on taking the limits on «,
that

o0

) 2 2+ 2in .
J\ bdbjo(bA)bz"’ = —_i. "I (Z) eZiarg r( +u])'

B. The solution for the scattering by a displaced charge

We write the impact-parameter integral in the form

. I'(1+in) (—2scos @)™ .
bA) (b +5%—2b n _ mey2  2Nin—m
debJo( Y (b +s S COS @) E Y Cur— " b™(b* + 5%y,
0 m=0

(B1)
The case m = O requires special care as regards convergence. Limiting ourselves to m

values not equal to zero, we note the result from p. 687 of Ref. [15]

T x2~1J (ax)dx oty 2
T A kTG v d I(E—p—3 (o +v)) 2" T(L+m)F(14v)}
0]

X Folde+3vito+iv—pv+1;3ak)*]+3 G a)* 2 T v+io—p—1)
x{T(u+2+3v—3 )} " (Falu+1; p4+2+% (v—0), p+2—1% (v+0); (& ak)?],

a>0, —Rev<Rep<2Reu+7. (B2)

Making appropriate substitutions we find, for m > 1,

0

J bdbJ y(bA)b™(b? + 521" = %(

_2—)2+2|'v]-m F(l—% m+”1)
4 I'(} m—in)

X Fy(m—in; 3 m—in, 3 m—in; (3 s4)?)+4 s> 2m Td+3 miG m=1—in

I'(m—in)
x Fy(1+3m;2—4 m+in, 1; (4 54)%). (B3)
In dealing with m = 0, we evaluate
lim | bdbe™J(b4) (b*+s*)™. (B4)
Re::g 0

We use the following representation for J,:

Jo(b4) = n~* [ dy exp (ib4 cos ) (B5)
0
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and evaluate

e}
lim | bdbexp [—b(x—id cos p)] (b*+s2)" (B6)
Rea>0 O

a—+0

by performing the limiting procedure on o. We then integrate over y. The integral in (B6)
is found by differentiating with respect to p the integral

I = {dx(x*+u%" " ! exp (— ux), (B7)

Q= 8

which is found on p. 322 of Ref. [15]. Thus,

1/2—v

1= —(ﬂ)”22v”3’21"(\f)u2”[ —(u#)”z_”Hw1/2(uu)+(u;4)”2_"1\’v+I/z(u#)] ,

721 +v)
(B8)

where

jargu| < 7, Re u >0,

and H,,;, N, are, respectively, the Struve and Neumann functions. Setting v = 1+,
u = a—idcos y and u = s, we calculate /. The power series H,,, and N, ., are then
expanded as power series and the y-integration is then done. This involves a simple integra-
tion of a sum of complex powers of (cos y). The final result is just as given on the right-
hand side of Eq. (B3), when m is set equal to zero. The final expression for the impact-
parameter integral is as given in Eq. (3.4) aside from a trivial multiplicative factor.

C. The impact-parameter integral I(s) = | bdb Jo(bA) K, [(b? +5%—2bs cos ¢)*5] b2
0

The integral I(0) is already tabulated [15] where one finds
10) = 22" (1 +in)d~ 22", F (1 +in, 1+in; 1; —4%672) (C1)
= 2282+ A%) " T+ in), Fy(1+in, —in; 15 4%(4% +0%)7Y). (C2)

Further evaluation is possible using the power-series expression for Ky(z)

K(z) = lim {n(2 sin vz)~ [exp (4 inv) (3 iz) ™" i G 2Y[Irev+j+D]71
=0

v-+0
—exp (<3 im) (12" T (2P L0++ D] ()

We need the result
lim [ exp (~ab)bUo(bd)db = 347Y TGN (MG-39)" ()

Rea—0 0O
a0
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to perform the integration over b. In taking the limit as v — 0, analytic continuation is
required of the function ,F; and, with the help of relationships connecting various ,F,
quantities with different arguments, we arrive at Eq. (C2).

We proceed in a similar fashion if s # 0, by using the binomial expression for the
combination (b*+s2—2bs cos ¢). In particular, we need

A+x)* =Y I(l+)(l—a—m)"'x"(m)~", |x| < 1.

Inner and outer parts contribute as a resuit; but we ignore the former in dealing with
situations where # > 1. The I' functions simplify in such situations as in Eq. (3.5) for
example, after some manipulation, we find

I(s,4,8) = 10, 4, 3[1 —y~' 5 - A]V/2),
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