vol. B7 (1976) ACTA PHYSICA POLONICA No 6

MODIFIED KERMAN McMANUS AND THALER OPTICAL
POTENTIAL

By M. BLeszyNskl AND T. JAROSZEWICZ
Institute of Nuclear Physics, Cracow*
( Received September 29, 1975)

It is claimed that the Kerman McManus and Thaler (KMT) optical potential in its
commonly used form has to be modified in order to reproduce the correct high energy limit,
i. e. the Glauber formula. It is shown that when assuming (apart from the fixed scatterer
approximation) the commonly used off-shell preseription for individual projectile-nucleon
t-matrices {p'|¢| p>=1(p—p"), one has to neglect the terms responsible for a multiple scat-
tering of the projectile from the same nucleon in the KMT optical potential. This modifica-
tion is in fact equivalent to the prescription proposed by us recently for multiple scattering
calculations at medium energies. The importance of such a modification is illustrated on the
example of proton scattering from He?.

1. Introduction

It is customary to analyse the high energy hadron-nucleus scattering data in terms
of the Glauber multiple scattering theory [1]. As is well known, for heavy nuclei the optical
limit of the Glauber formula or equivalently the optical potential approach can be used,
in which the optical potential V', describing the projectile-nucleus interaction is simply
equal to the projectile-nucleon elastic scattering amplitude times the nuclear density.
The advantage of the optical potential approach is that it retains its validity also at lower
energies, of order, say, 1 GeV, where the Fresnel-type corrections to the eikonal propaga-
tion of the projectile in the nucleus i.e. to the Glauber model are known to be important
(see, e.g., Refs [2, 3]). Since the projectile-nucleus interaction is described by a simple single
particle (and usually central) potential, it is an easy task to solve the corresponding Schro-
dinger equation without using the eikonal approximation.

Recently a great deal of experimental data on hadron-nucleus scattering at energies
of order 1 GeV has become available [4] and there has been renewed interest in the optical
potential approach in the version due to Kerman, McManus and Thaler (KMT) [5].
This approach has been used even for nuclei as light as, e.g., He*. It seems interesting,
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therefore, to test the validity and the convergence of the optical potential by comparing
the KMT amplitude with the exact result, especially in a case where quantitative discussion
is possible.

In the present paper we discuss the validity of the KMT approach in the high energy
limit and present quantitative comparison between the exact (in potential scattering
theory) amplitude, being simply the Glauber model result, and the KMT amplitude.
We consider the scattering from the target composed of given N fixed scatterers “nucleons”
assuming its wave function to be the product of the single Gaussians plus the centre-of-mass
constraint, and the Gaussian form of the projectile-scatterer amplitude. In this framework
we calculate the KMT amplitude with the optical potential taken to practically infinite
order and compare it with the Glauber model amplitude.

We find that when using such an off-shell continuation of the amplitudes that they
depend on the momentum transfer only one gets a significant discrepancy between the
KMT and the Glauber models. This is due to the presence of the rescattering terms (i.e.
terms in which the projectile is scattered more than once on a given nucleon) in the optical
potential. On the other hand, as was shown by Harrington {7], these terms do not contri-
bute to the multiple scattering series in the eikonal limit. This discrepancy can be simply
eliminated by putting the rescattering terms in the optical potential equal to zero when using
the above-mentioned prescription for the off-shell amplitudes. In fact, as was argued
in [8], this way of calculating the multiple scattering amglitudes, i.e. assuming that the
off-shell amplitudes depend on the momentum transfer only, together with neglecting
the rescattering terms in the multiple scattering series seems to be a quite reasonable
appioximation even at medium energies.

As for the conveigence of the optical potential, we find that for light nuclei, such as e.g.
He*, in order to reproduce the exact scattering amplitude the optical potential has to be
taken to an order at least equal to the number of nucleons in the nucleus. For heavier
nuclei it is sufficient to take only the first order term of the optical potential.

Finally we comment on the applicability of the KMT approach in the analysis of
scattering from nuclei at medium energies.

2. Basic notation

The formal solution of the problem of scattering of a given projectile from a system
of N scatterers in potential scattering theory was given by Watson [9].
The transition operator is

N
1
T = T;+ T Tkt
E [ z T E—Ho+ie *
i=1 J7k

where 7; are the transition operators for the projectile scattering on bound scatterers,
E is the total energy of the system and H, the Hamiltonian from which the interaction
potential has been removed [10].
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In the fixed scatterer approximation (FSA) the operator (E— H,+ie)* can be replaced
by the free projectile propagator

(265~ 5" <P!

G, = e
0 kz—pz-I—ie

)
.5

where k is the projectile incident momentum in the Breit frame and the whole Watson
series reduces to

N
LGot+ Y. 1,GotGot;+ ... (2)

ik# ]

M=

T =

i

t+
1 i

M=

It

where t; are the transition operators for the projectile scattering on free taiget constituents.
At moderately high energy, say, above 300 MeV, the operators f; and z; are very close
to each other.

In what follows we shall adopt the FSA approximation and in referring to the Watson
series we shall think of the formula [2].

The Glauber model is the exact solution of (2) in a limiting case of infinitely high
energy. Here only one assumption is needed, i.e. the replacement of Go(p) by the eikonal
propagator

G¥¥(p) = (2k - (k—p)+ie) . (3)

Denoting the T matrix elements between the on-shell states in the eikonal limit by
TEIK(Z, Fly eoes ?N), we have

- - - k 'yt - > >
TEKL, 7y oy Ty) = 8—;3—jd2be"”’1“(b, S1s ceer SN)
;j = (Ej, Zj) 4
where
- s » N - >
(b, sy, onsy) = 1= I A=v(b—s) &)
i=1
and the operators y; are related to the on-shell ¢-matrix through the following relation:
- . —ik I I
tEIK(A) —_ <p21tlp1> = _8_13 J‘dzbel(pt_lu)by(b)‘ (6)
s

The transition amplitude between the two nuclear states [r) and |m) will be de-
noted by

TEK — (n|T*™(4, 74, ..., Fy) IMD. @)

The relation between the #; matrix elements and the elastic scattering amplitudes is

1 o L - -
. e‘(Pl‘Pl)"J’f(pz’ P1)a

<P2|tji;’1> = — Py
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whete 7; is the position vector of i-th target constituent, and f are normalized so as to give
the elastic differential cross-section

d
T (B PO

3. Derivation of the KMT optical potential

A detailed derivation of the KMT optical potential can be found, apart from the
original paper of Kerman, McManus and Thaler [5], in Refs [6, 7]. In this approach one
assumes that the projectile is distinguishable from the target nucleons, i. e. its antisym-
metrization with them is not necessary. Then the optical potential is calculated, being the
infinite sum of terms proportional to the given powers of individual z-matiices. One gets
then

VKMT = z KM’D (8)

where each term V{4, involves the -matrix elements up to n-th power. For instance the
first term is
N

Vs = (N—=1) <0l & Z £10.

j=1

Here we shall present another, much simpler way of calculating Vi which gives
the same result as its derivation in [5].

Following KMT let us assume that the antisymmetrization of the projectile with the
target nucleons is not necessary and introduce the operator Vi through the relation

N -
Too = 0|TI0) = N—-1 VKMT(l"‘GoVKMT) L )

By solving the above equation with respect to Fgyr we get immediately an expression for
the KMT potential in terms of the matrix element Tyo. Then writing Too as

Too = Z T(”), (10)

n=1

where T® is the n-th order scattering amplitude

T® =0 Y  #,Got;,Gq ... Got;, 0D, (1)

f1#£iz# ... #in

we obtain the expansion of the optical potential in the form

Vemr = Z Viurs (12)
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where

N-1
Vléltd)T = N T(1)9

N-1 N—-1\?
V(Z) — T(Z}__ T(I)G T(l),
KMT N N 0
Vi = N—;l T~ (NN1> [TVG,T® + TG, T

N-1\?
+ (—Tv') TG, TG, T, etc.

Inserting Eq. (11) into these expressions, we arrive finally at the following expansion
in terms of the individual r-matrices

Vimr = (N=1) 0] — z 1105,

Vi = (N—1)?] <0 1 t,Got|0>
KMT N(N 1) JY 0%k

*k

i 1
—(031—\; E t,-10>Go<OiN E lk§0>],
j k

J

HE) 3 o
Vgur = (N—1) {(0 NV = 1)(N 2)2 1:Got,Got ;10>

#k

N

N
1 1
£,Got 105GoC0l — > 110
S aoaol Y o
i£j k
N
<0 — ' £.GyCOl 1,105Got10>
'NN=D iUy k! ol
i#j k=1

N
1 1
~<0| N Z £;105Go<0l ——— 1:Got[0)
j

—<0l

N(N-1)

i#k
N N N

1 1 1
+2€01 z 1107Go0l Z 1105God0l & Z tk10>}

i=1 ji=1 =1
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1
+(N‘”3{<°‘;\}(T\?_ 1God 012 105Go1,]0>
N N N
1
-0 Z 1105 G<O) Z 1£/05G <0 Z r,,,10>}
j=1 k=4 m=1

e\
+ (N —=1)*¢0 NN =) LJ 1;Got;Got 10>

i#j

N N N
1 R
_(N_DZ@N E 110> G4<0! 2 1;10>Go<0| ; 1al0). (13)
p—)
i=1 ji=1 m

Anticipating the discussion in Sec. 5 let us stress that, in general, the successive terms
Vit in the expansion (12) of the optical potential are not proportional to the two par-
ticle, three particle etc. nuclear density correlation functions. Indeed, the higher order
terms V{y for n > 2 in general do not vanish even if there are no correlations between
the nucleons. This is most easily seen by explicitly calculating a few first terms of Vipr

Let us assume for simplicity that the interactions of the projectile with the target
nucleons are identical, i. e. in FSA

ik = 5 Eiginky  for  i=1,.., N. (14)
Using Eqgs (13) we have

K Viowrl®> = T KW, (15)

where

K \VEky = (N=1)F(k—=L') <K' |1k,
3

KV = (N—1 e kPG 1kH>CH -k, k-
< mrikD> = ( ) < ’P> o(P) <P ) (p— P),

(2n)?
d’p
K Vahiky = (N=1)? (Zn); @ )3 TN
Go(.l;z) <Ez§f§E1>Go(I’1) <;’1\tlk>w(l’2—/€/a P _'2;27 }:—Z’l) (16)

In these formulas

WGy, 42, 43) = C(@y, 42, 43)+ F(@2)CP(q,, 43)

1 - - - -+ - - ‘ > - s
+ N_1 [C*q,+4q3, 4)+F(q; +4s, 41— N_1 F(q)F(q,)F(q3),
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N
- ,i P
F@) = 0 y ¢10),
s
j=1
N
2 = . ity + e R
CP(@r ) = <O e E M0y — F(G)F(d5),
j#k
O a5 = O N g
N(N—1)(N=2)

JEk#Em
~CGy, 42)F(@3) = CP@,, 43)F(d2)— C¥(d3, 43)F(d )~ F(@)F(@2)F(qs).  (17)

The functions C® and C® are simply the two-particle and three-particle correlation func-
tions in the momentum space representation.
If there are no correlations, then C® = C® = 0 and

K WGhiky = 0
and the term W present in V(i reduces to
1 .- e a “ e
No1 [F(q, 443, 42)~F(q,)F(q2)F(q5)]

1. e. it contains the terms corresponding to the triple scattering on three nucleons and
the triple scattering on two nucleons, i. e. the rescattering term.

4. Modified KMT potential

The optical potential Fyyr given by (12) is in general a complicated non-local operator
and in the practical applications some approximations are made which make the calcula-
tions possible. Thus apart from the FSA it is commonly assumed that

(7) the r-matiix elements can be approximately considered as depending on the mo-
mentum transfer only, i. e.:

pltipy = p—p), (18)

where t(p— p’) is the on-shell value of the r-matrix element for projectile-nucleon scatter-
ings which are parametrized so as to be consistent with the experimental data. This approxi-
mation is in fact intimately connected with the original version of KMT theoty and is
always made in the applications (see, e. g., Ref. [6]).

(if) it is sufficient to retain only a few terms in the expansion

w0
Vimr = Vp+ W = Z Vi (19)
n=1

For convenience we have split ¥y, into two parts ¥, and ¥ which contain the direct
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scattering terms and the 1escattering terms, i, e. terms in which a given target nucleon is
hit more than once by the projectile.

The approximation (/) is very closely connected with the problem of contributions
from the rescattering terms in the Watson series or equivalently the rescattering teims in
Vg. Let us note that in the infinite energy limit, where the ecikonal approximation is
valid, the whole Watson series calculated FSA and without the approximation (i) does
not contain the rescattering terms and is finite {12]. The resulting amplitude in the KMT
theory with the same approximations and with the potential taken to the infinite order
differs, therefore, from the cxact result by the presence of the rescattering terms in V.
Strictly speaking, the KMT amplitude is then equal to the Glauber amplitude plus the re-
scattering terms, which should vanish if the proper off-shell continuation (in the potential
scattering theory) is used.

Therefore in order to get the correct infinite energy limit in the KMT theory with the
approximation (i), one should put the rescattering terms (i. €. V) equal zero.

Now the problem arises whether this modification of the KMT optical potential is
a reasonabie one at lower energies where the eikonal approximation is no longer valid.
The problem of the connection between the approximation (i) and the contribution from
the rescattering terms has been studied in detail in Ref. [8]. In this paper an example was
considered of scattering of given projectile off two fixed potential centres Gaussians at
medium eneigies, in the framework of the first order eikonal expansion. It was shown
that the whole infinite Watson series calculated with the proper off-shell continuation of
t-matrix elements is very close to the finite multiple scattering series calculated with approxi-
mation (i) and without the rescattering terms. The main corrections to the eikonal approxi-
mation turned out to come from the free wave propagation between the successive scatter-
ings, where the way of the off-shell continuation is inessential. An example of these non-
-eikonal corrections was given in Ref. [13] in the case of proton scattering from He*.

Motivated by the above considerations, we suggest the same modification of the
KMT amplitude at medium energy which consists of replacing the potential Viyy =
= Vp+ Vx by the modified one equal simply

VM = VD' (20)
It should also be noted that the modified KMT amplitude, i. e., calculated using ¥y,
coincides with the formula recently proposed in Ref. [13], which is of the form

T=3t+ Zk t;Goty+ ; 1,GotGot;+ ... (terms up lo N-th order of scattering)
i i#k#j

(21

wheie #; are the -matrices for the projectile-nucleon interaction calculated with the assump-
tion (i) and G, is the exact free wave propagator, k being the projectile momentum.

In order to illustrate the importance of such a modification of the KMT optical
potential, we shall make the quantitative comparison between the original and the modi-
fied KMT amplitudes in the case of hadron scattering off light nuclei at high energy,
with the potentials taken to practically infinite order.
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5. Comparison between the original and the modified optical potential

In order to simplify the discussion and avoid unnecessary calculational complications,
we shall consider the elastic scattering of a given projectile from the nucleus with the
independent particle model (IPM) density having the factorization property, so that the
centre-of-mass correlation will be antomatically included by multiplying the resulting
amplitude by the cortection factor @ defined by (A.5). The ground state density is then

N
o1 e Ty) = I1 oir). (22)

i=1

Let us also assume that the target-nucleon interactions with the projectile are identical,
i. e. Eq. (14) holds.

We can write the average of the Watson operator with the density (22) as a sum of
the direct and the rescattering term

Too = Tp+ Tx, 23)
where

Ty = NCUD+N(N—1) 02>+ ... +<12... ND. (24)

Here we have adopted a shorthand notation which can be most easily understood on the
following examples:

<1 = €010,
(123> = 0it,Got,Gotl0> = (13Go{1>G<1> for i# k#m, i # m,
<121> = <0|t,Goth0tll0> fOI‘ i # k.

The optical potential can now be calculated with the help of the formula (9) and can
also be decomposed into the sum of the direct and the rescattering term:

N-1 N-1 -t
Vemr = p+We = N Too{ 1+ Gy N Too ) > (25)
where
N-1 N-1 -1
W= N Tp| 1+G, N )} 5 Ve=Vermr— Vo (26)
The term ¥y, can be easily computed if we substitute into (26) the expression
N
N-1 z :
Ty = a, {12 ... n), 27N
N
n=1
where
N=2)!
a, = (N—-1)? ——— (V-2)! aay=0 forn=1,23,... (28)

(N=n)!”
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In this way we get

[¢s]

1 N
Vp=1— = 2_4 {12 ... n), (29)
1+ Z <12 n=1’

where the coefficients ¢, can be obtained from the recurrence relations [14]:

= Z AyCp—ik (30)
k=1
with ¢, = —1.
The application of the above formulas yields then
Vo = VEV+ WP+ .. (31)
where

VD = (N=DD, V=0, WY = —(N-1)*123),
VP = —(N=D*(N-3)<1234), VP = —(N-1)’(N—2) (N —5) 12345 etc.,

(32)
and
Ve = Va4V + (33)
where
V& = (N-1)%121),
VY = —2(N—-1)21213) + (N = 1)*¢1212) +(N = D*(N —2) {1231),
VP = (N—1A(N—=2) [{12131> +2<12132) + {12312} + {12321}]
+2(N—-1D*(N=2) (N —4) [(12314) + {12134}]
+(N=1*(N—2) (N —-3) (12341> —(N = 1)*(N —3) {21314>. (34)

Let us now assume the Gaussian parametrization of the projectile-nucleon ampli-
tudes

a

(1 in)e —z_qz, (35)

(q) = Y

where k is the projectile momentum and ¢ is the total cross-section for projectile-nucieon
interaction. This gives the following configuration space representation for G
+ oo
1(r) = yb)B(2), | dzt(r) = y(b),
where

o l—ia -2 T -2 L
e - =t w T =(b2). (36)

by = s
wb) 4dna 7€
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Let us also assume the Gaussian form of the target density
L 1Y - LS
o(ry, ..., ry) = (7171?) e Rz 37N

which is very convenient with respect to factorization of the centre-of-mass correction,

which takes the simple form:
A2R2

0(4%) = e *V.

Now we shall compare the KMT amplitude in its original and modified versions, at high
energy where the eikonal approximation can be used. In the second case we get simply
the Glauber amplitude, 1. e,

ke T% sy = el TE™ ks (38)
and in the first case the Glauber amplitude + the rescattering term, i. €.,
ke TE™ K + Ko TE™ e (39)
The Glauber amplitude o1 equivalently the direct terms can be written as
e TE® iy = N(I)+N(N=1) I2>P% 4 . +{12 ... NYEK, (40)

where

12 ... ndE* = (0j— —:—szbe““’t(b—sl,f1 z)0(E,—¢&))

- . . ik 1 2y ik - .
. G(Sn—fn-l)t(b_sm £n~zn) ,0> = - g{} "n_; <0! d"be '))(b*—SI) Y(b_sn) }0>

(41)

{compare [15]). The rescattering terms are somewhat more complicated, e. g.
(1215 = j<03—- égjdzbeizsf(3~§1, E 2z )0E— &)
tH(b—5,, &, —z;)O(éa—éz)?@-él, &3—12,) 10>dE,dE,de,,
1212)F% = j e J b (bh—5,, &, —2,)0(8, &)

1(b—s, «:z-zz)e@s—sz)r‘(EaEl, &3—21)0(8s—E3)
1(B =55, £4—22) |0>dE,dE,dEsdE, ete. (42)
We have obtained analytical expressions for the rescattering terms of the third and
fourth order.

The higher oider tetms have been calculated numerically, as they are given in the
form of single, double, etc. integrals. We have applied the above formulas to the case of
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N = 2targetand N = 4 target using the oscillator parameters R = 1.61 fmand R = 1.37 fm
respectively, which correspond to the radii of the deuteron and He* nuclei.

In Figs 1, 2, 4 and 5 it is seen that the contribution from the rescattering terms appears
to be comparable with the values of the direct multiple scattering terms, especially for
larger momentum transfers, because the slope of the rescattering term of a given order #
is in general smaller than that of the direct term of the same order.

Note also that in the limit

2a

&0
the rescattering terms go to infinity; roughly speaking this is due to the fact that in this
limit the operators y(l-; —5,;) act as Dirac delta functions of the argument 5—31 and in the
rescattering terms always one y operator appears at least twice.

Another interesting point is that the contribution from the rescattering terms seems
to be more impoitant as the number of nucleons in the target becomes larger (compare
Figs 1 and 4). This arises from the fact that for heavier nuclei there is a larger number of
possible rescatterings being of order relatively small as compared with the highest order of
direct scattering, which is important in the whole amplitude.

N=2
2
10%r === Vopt =Vkmr )
—— V = Vy(Glauber modet)
< 10
(]
Q
)
E
&
© 10°}
o]
A
/// \\\\
107" / \\\
v SN
~
~
| 1 \\
0 05 10 15
A?(GeV 2]

Fig. 1. The differential cross-sections for scattering from N = 2 target with Gaussian density R = 1.61 fmm

and with Gaussian parametrization of the amplitude calculated in the eikonal approximation with Vkmt

and Vy taken to the infinite order. The parameters are a = 5(GeV/c)-2, Re #(0)/Im ¢(0) = —.33,
Im #(0) = —ko/8a® with ¢ = 44 mb
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103 3
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Fig. 4. The same as in Fig. 1 for N = 4 target, R = 1.37
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Fig. 5. The same as in Fig. 2 for N = 4 target
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To conclude, the above results show that the suggested modification of Vyyy is really
important. They also show the importance of the correct way of calculating the off-shell
t-matrix elements if one wants to take into account the corrections coming from the
rescattering terms at energies where the eikonal approximation is not valid.

6. Convergence of the modified KMT optical potential for light nuclei

We shall now discuss the convergence of the modified optical potential Vy = V.
Similarly as in the previous section we shall assume (14) and (23).

Let us denote by V'] the optical potential terminated after the first j terms; according
to the formula (29)

o]

Vi =V iz ... ny, (43)

n=1

where
N=¢, forn<j,
=0 forn>j. (44)

The amplitude T corresponding to- V! is

0

T = Y dU12 ..onp, 45)

n=1
where dY! can be calculated from the recurrence formula

dV =Y a7t with df? = —1. (46)
k=1
This can be done in a way analogous to that used in the derivation of Vyyq from the
Watson series in Sec. 3. If the potential is taken to the infinite orde:r then the corresponding
coefficients d{*! are

df'°°]=N(N—1)...(N—n), n = 13-'-3N'

Comparing the coefficients dl'! with d'™), we see that their ratios

dtH N(N-1)**

dt*l - N(N-1)...(N—n)’

Mn

(47)

in particular
2
_N-1 ;. (N=1)

[1} _ [11 _ n —
N=2" "™ T (N-2)(N=3)

i =nl=1

etc.

tend to unity as N — . Therefore, we may expect that for heavy nuclei already the
first order of ¥V, is a good approximation.

For light nuclei, such as, e. g., He?, it will be instructive to calculate explicitly the
amplitudes with Vi1, V... etc.
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Assuming now (37) and replacing G, by the eikonal propagator (3) we get

o

. ik ~
o= - K J 42be E 4O}y, . 7,105, (48)

n=1
Inserting the density (37) into the above formula we get

o

; ik 1 o(1—io) T 2R _ 43R+ 20)

T o — dLJ]_ — D)"Y R4 C N o
n 47:3 n ( ) ( a) R—————2+2a e

n=

(49)

The convergence of Vy, for N = 2 and N = 4 is illustiated in Figs 3, 6 where we have
plotted the differential cross-sections calculated with the potential taken to the first, sec-
ond, third, ... etc. orders and compared it with the exact 1esult in the eikonal approxi-
mation, i. e. the Glauber formula, or, equivalently, with the KMT amplitude with the
modified potential V', taken to the infinite order.

10°
N=4

=== Vopt = Vu (Glauber modet)
R \‘/0m - VS)

~ Vopt = \&)“Vﬁ)
== Vopt = VS,’+V<,})+V‘,2‘)
—rm Vop = VED+ VD 4 V) L V)

10?

10’

10°

107k

do/dA? (mb/GeV?]

1072

1073 .
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Fig. 6. The same as in Fig. 3 for N = 4 target
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We see that for He* nucleus the first order of the optical potential is a very bad ap-
proximation already in the second maximum in the differential cross-section; it over-
estimates the correct result by about 1009,. This is because

=15 nl =45 (50)

and in the second maximum triple scattering i$ very important. In order to reproduce the
exact result up to the momentum transfer squared equal 1.5 GeV?, one has to take the
optical potential to the fifth order.

At medium energies the situation is not much different because of (47). For illustra-
tion we have compared in Fig. 8 the differential cross-sections for p-He* scattering calcu-

102+ N=-4
T ag=1GeV
= Vgpt =Vp.(formula 21}
10+ === Vopt =V|§\1|31T = VP(A)
— ol
B
=
—L
85 10°
S—
10721
10-3F
; 1

i
50 75 10
AZ2{GeV ]

Fig. 8. Comparison between the cross-sections calculated with the modified KMT amplitude (solid line)
and the KMT amplitude with the potential ¥y (broken) at medium energy kpap=1.7 GeV with the same
parameters as in Fig. 4. Here the eikonal approximation was not used

!
25

lated with the modified optical potential taken to the infinite order, or, equivalently,
according to the formula (21) [13] with the result obtained by solving the Schrodinger
equation with V(= V). From these considerations we see that KMT approach for
light nuclei is rather impractical since it should involve the optical potential of order in
general greater than the number of scatterers in the target.

It is also interesting to note that if the KMT amplitude is calculated for the scattering
from the target of N constituents with the potential taken to the a#-th order, then the coef-
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ficients
dil = dl*1  for m < n,
&V £ d*1 for n > m =N,
d" 20 for m=N+1,N+2, ..
1. e. there is always a non-zero contribution from the terms

12...m> for m > N

which become dominant at sufficiently large momentum transfer because their slope

R*42 R?
48—?1\[, for n > N
n

is negative (see Fig. 7). This explains, e. g., the behaviour at large momentum transfers
of the cross-section for N = 2 calculated with Vi, Vil; ete. (Fig. 6).

7. Conclusions

We have studied the applicability of the KMT optical potential approach in the
multiple scattering of elementary particles from nuclei at high and medium energies.
It was shown how the KMT optical potential can be derived in a simple way directly
from the Watson series. A modification of the KMT optical potential was then proposed,
which consists of neglecting the rescattering terms when using apart from FSA such an
off-shell continuation of 7-matrices that they depend on the momentum transfer only.
This modification was shown to be necessary in order to get the correct asymptotic high
energy limit of the KMT amplitude.

For heavy nuclei the KMT amplitude with the first order optical potential is a reason-
able approximation, ptovided that we are in such the region of momentum transfers that
the dominant multiple scattering terms have combinatorial factors very close to the factors
dt™. On the other hand, the convergence of the optical potential for light nuclei was
shown to be.rather poor: in order to reproduce the correct result one should use the KMT
amplitude with the potential taken to the order equal at least to the number of scatterers
in the target.

Therefore at medium energies, where the eikonal approximation is questionable,
the KMT amplitude with the potential taken to the first order is a better approximation
than the Glauber formula only for heavy nuclei. For light nuclei such as, e. g., He#, it is
much more convenient to do the multiple scattering calculations with the help of the
formula recently proposed in {13] which in fact is equivalent to the KMT amplitude with
the modified potential taken to the infinite order.

Thanks are due to Prof. W. Czyz for suggesting some corrections to the original
version of the manuscript.
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APPENDIX A

The treatment of the centre-of-mass constraint in the KMT theory

The standard way of treating the centre-of-mass correlations in the KMT optical
potential is described in Ref. [6]. It consists simply of introducing the centre-of-mass
correlation in the formulas [16].

Let us remark, however, that in the FSA another possibility of calculating the centre-
-of-mass correction arises if we have at our disposal the “auxiliary” model wave function
having the factorization property

G o Pyl0 = 9ty oons ) = RR)SG, oy ) (A1)

- 1 : i_. - -
R=— » ri=r—R .
N r r (A.2)

i=1

where

and @(+,, ..., ry) is the “true” internal wave function whose arguments automatically
satisfy the constraint

Yri=0.

Then using (14) we see that the Watson scattering operator given by (2) has the property
that

(PTG ooes ) DY = PR TG, .oy THIDDS (A.3)

where 7 is obtained from T by replacing r; by r;. Then from (A.1) and (A.3) it follows
that one can calculate the transition amplitude 7" with the model wave function, provided
an extra correction factor is introduced as follows (see Ref. [11]):

BIT' 9> = O((p' — DY piT|w, (A.4)
where

0(4?) = | d®Re“ R R(R)2. (A.5)

The above property of the z-matrix can also be used in the calculations in the frame-
work of the KMT theory, this is quite obvious in view of our derivation of the KMT
optical potential directly from the Watson series. One can simply relate the optical po-
tential to the 7-matrix element calculated with the wave function v and then multiply the
resulting amplitude by the correction factor O.

This method of treating the centre-of-mass correction is very convenient, especially
in the calculation of the second order optical potential which simply vanishes if we calcu-
late it with the wave function without correlations.
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