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HIGH ENERGY LIMIT OF DUAL MULTILOOP DIAGRAMS
FOR CPT UNITARISATION SCHEME

By P. ZENCZYKOWSKI

Institute of Physics, Jagellonian University, Cracow™
( Received September 30, 1975)

Simple asymptotic expressions for the four-point N-loop dual amplitude in a specific
high energy limit are given. A reasonable approximation of the obtained formula, which
can be used in the Chan-Paton-Tsou unitarisation program, is proposed.

1. Introduction

Recently Chan, Paton and Tsou (CPT) have proposed a half-phenomenological
method of unitarising the S-matrix based on the dual model (Ref. [1]). They calculated
elastic diffractive scattering as a shadow of nondiffractive production processes. The
unitarity of the S-matrix written in terms of T

T+-T)=T*T 1)

is a basic formula in their approach. Theys ketched an ambitious program of solving this
equation by means of the step by step iteration method. In this way, it should be possible
to calculate all higher order corrections to the nondiffractive particle production. In the
first step, the 7" on the right-hand side of Eq. (1) is regarded as a usual dual amplitude
without loops. In order to compute the imaginary part of the elastic scattering amplitude
in the high energy limit, one should find, according to Eq. (1), the asymptotic expressions
for the diagrams depicted in Fig. 1.

In the limit s — co Chan, Paton and Tsou analysed the simplest 4-point 1-loop dual
amplitude. Using the factorisation property they were able to write the corresponding
expressions for multiloop diagrams. For inelastic diffractive scattering one wants to know
the asymptotic form of different kinds of planar and nonplanar multiloop diagrams in
different limits.

In this note we are interested in a specific high energy limit of a particular 4-point
multiloop diagram visualized in Fig. 2. Correct treating of other diagrams requires still
further study.
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The general methods of the dual perturbation theory give a relatively simple formula
for n-point 1-loop amplitude (Ref. [2]). The expression for a multiloop diagram has also
been found (Ref. [3]). Unfortunately, the mathematical form of the formula is highly
complicated and in spite of its elegance it is not simple to make use of it. In particular,
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Fig. 1. The imaginary part of the elastic scattering amplitude as a sum of dual multiloop diagrams in the

CPT scheme
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Fig. 2. Four point N—1 loop dual diagram

for multiloop diagrams it is not clear, whether one can define in a simple way the corre-
sponding Chan variables x;. This fact makes it difficult to calculate the high energy limit
for such a diagram. It turns out, however, that for some diagrams analysis of the By-func-
tion helps considerably in deducing this limit. The results of analysis of the 1-loop diagram
(Ref. [1]) we obtain in a simplified way.

For multiloop diagrams in the limit visualized in Fig. 2, we show that the parts 4
and B are given by the By, ,-functions in which the transfers &(/, {4+ 1) are replaced by
(i, i+ V—a(i, iy—a(i+ 1, i+ 1) (the notation is defined in Fig. 2). From the structure of
By-functions it follows immediately that it is not possible to factorize such an amplitude.
This fact is related to the existence of correlations between all reggeons. We propose an
approximation in which all correlations between nonsubsequent reggeons are neglected.

2. One loop case

Let us consider the one loop four point diagram (Fig. 3). The methods of the dual
perturbation theory give the following expression for the corresponding amplitude
(Ref. [2]) in the high energy limit

L(1) = [ d*k § dx,dx dxsdx,x] ™" txy o Iy o Ixg e

% (] _xl)*Zm 'pz(] __xz)—lpz : m(l “xs)—lps . an _x4)~2p4-m
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In the limit p, - p,, ps - ps — —co the only important contribution comes from the
X, * x3 ~ 0 integration region. Let us denote oy = 1+(p;+p,)*. Applying the standard
substitutions
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Fig. 3. Four point on¢ loop dusl diagram

after taking the limit %,,, %3, — —o° we obtain
1 K
L(1)y = § d*k { dxydx, | dzydzyz7 @7 lzg %7 kg e ixgxe !
O o

X (=0t12)" (= 38)2(L=x2) ™27 (L =x0) 7" exp [ —z5(L—x2) (1 —x3)
—z3(1=x;) (1= x,)].
Integration over z;, z; can bc done yielding
L{l) = j d*RT(—2y) (=2, )" (= a3) (= %34) B2y %3 — %, — %3) Ba(otg, 214 — %y —3).

€))

The loop amplitude shows the expected factorization into two amplitudes connected by
Regge pole exchanges. Moreover, one can simply compute the discontinuity of the elastic
scattering amplitude coming from the cut due to the normal threshold for resonance pair
production (a4, o) = (1, n,).

The contribution of the (#,, #,)-cut is

cut (ny, ny) ~ d*k Res (M), ,,0(ctq —n1)8(x, — 1),

where M in the integrand in Eq. (3).
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We have

cut (ny, ny) ~ jd4k1"(—-oc1) (=)' T(—a3) (—o30)™

1 d_z Z-nz(l )a1+a3—a23—1 _1 §£l/'_4 7—n1(1 )a1+a3—a14—1.

27r z, 2ni | z4

In such a way we were able to obtain the CPT result without any summation over the
internal variables.

3. Multiloop case

In order to explain the method we will first find the one loop result from the analysis
of the Bs-function (see Fig. 4). Not losing generality we take the contribution to the one
loop diagram at o, = 0. According to the general rules for constructing dual amplitudes
this is equal to the familiar Bg-amplitude

Bo — jd\ldxzd‘C3X (0,1)~ 1 —a(() 2)— 1 -a(O 3)-1
X(l-—xl)-“(1’2)~[(l——xz)_“(z’”_l(l—xs)_’(s"”_l
><(1_xlxz)—a(l,S)+m(1,2)+a(2,3)(1_xzxs)—a(2,4)+a(2,3)+a(3,4)

X (1 ___xlxzxs)—a(1,4)—a(2,3)+4x(1,3)+a(2,4)
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Fig. 4. High energy limit for By (s — c0)
i Z3

In the limit «(0, 1), «(0, 3) - —co we substitute x;, = 14 ———— 0D’ =1+ &(0 3

and

obtain

o0

1
Bs = | dx, | dz,dz;exp (—z,—23)zy DT 72 GO0, 1))
[} 0
x (—(X(O, 3))1(3,4)x2—a(0,2)—1(1 _xz)a(1,2)+at(3,4)—az(1,4)— 1

= I'(—o(1, 2)) (=0, DY* "2 I(=a(3, 4) (=0, 3))**¥By((0, 2), (1, 4)
—a(l, 2)—~a(3, 4)). €]
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Comparing this with formula (3) we see that we are able to compute the diagram shown
in Fig. 2 by means of analysis of dual amplitudes at the tree level (see Fig. 5).
For the amplitude B,y,, (the notation is explained in Fig. 5) we get (Ref. {4])

1 2N—-1

By, = j' dxy ... dxony 1 X[ HOD (| )Tt DL
0 i=1
1 ) ta( D+a(it+1 )
X (1— X0~ a(i,y—a(i+1,j—1)+a(i,j— 1) +a(i+1,j (5)
il;[l Jj 1_114'2 1_=[,

& (z,i)
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s -&f)) | 'R &B33)  &lii) ZINN.

< T~
P, F2 P PLPs Ps pi piut Pv-1 Pov

P22P3 P,=-P5 +=»
Fig. 5. High energy limit for By (s — o0)

In the limit «(0, ) » —co for odd i/, keeping all remaining variables a(k, /) fixed and

substituting x; = 14+ — “L__ for odd i, after some manipulations we obtain

(0, i

N-1

Byyss = -Ho F(—a(i+1,i+1) (=0, 2i+ 1)Lt

H 1),[)7i—a(0,i)( [— yi)~;(i,i+ U +a(iiy+a(i+1,i+1)—1

O ey =

N-2 i—1
X
=1

nz(l_ H y) a(i,jy—ali+ 1, =) Falij— 1y +agi+1, J) (6)
J I+

i

where y;, = xy;, &k, 1) = a(2k—1, 21), 1(0, i) = %(0, 2i) = o;. We recognize immediately
the integral in Eq. (6) as a function By,, with the prescription &/, i+1) — a(i, i+1)
—a(i+1,i+1)—a(, ). For a(i,i) = 0 we come back to the standard formula for By, ,
(Ref. [4]). From these considerations, we obtain for the N —1 loop amplitude, correspond-
ing to the diagram in Fig. 2, the following simple expression

LIN—1) = By4,(A)By+,(B) 1:[1 (=) "I (=a(i, ), )

where o, — o0 and By 5(A4) (By.2(B)) are to be constructed according to Eq. (6). In practice
it is not easy to deal with B,-functions, so we shall simplify Eq. (7) by neglecting correla-
tions between reggeons. Let us notice that these factors in By ,, which contain expres-
sions  &(i, j— 1)+ a(i+1,j)—0a(,j)—&(i+1,j—1) = —2p, - p; are responsible for cor-
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N—-2 N
relations between reggeons. Thus putting the product [] ][] in Eq. (6) equal to | we
i=1 j=i+2
neglect the correlations between nonsubsequent reggeons and obtain the decomposition
of the By, ,-function into

By, = By(ay, Ay — %y '“11'2)34(125 “;Z—O‘r’l‘““w,) 8)

In the CPT program we are mainly interested in calculating discontinuities coming from
resonance pair production. The residue of By,, for o, =n,, oa; =n,, ... 1is

N oy =0, ~ap,+n,+1) T'(ot, — o, =, +n,4+1)
ny (o =0, +1)  ny (0, — o, ~ 2, + 1)

®)

Because of the summation over resonance masses (< 6 GeV?) and exploiting semi-local
duality instead of Eq. (9) we choose rather its asymptotic form for n,, n, ... — oo, which
is
~ T TR e (10)

From this expression we see that the amplitudes

reggeon +resonance — reggeon -+ resonance

reggeon + particle  — reggeon + particle
are not distinguishable, which seems to be a good approximation for s/m?, — c. To
be convinced that in this limit we really may neglect the correlations between nonsubse-
quent reggeons let us consider the amplitude B,y ,, (Eq. (6)) for N = 3. If we restrict
ourselves to the resonance masses n;, #, < 6 GeV?, we find that the residuum of Bs at
oAy = Ry, 0, = N, IS

res B, = Z I'y+k) T(d+B,+n—k) T(1+5z+nz",k_)<
P KITG) T+ BT, —k+1) T+ ) (ny—k+1)

k < min {ny,n2)

(11)

where

B = Up =~y =0y fiy = Oy, = Olyry = Uy s

Y= Oy T A, =0 — X, = t12+t’2_t1"12-
The approximate form of Eq. (9) corresponds to the ¥ = 0 term in Eq. (11). We observe
that the contribution from & # O terms introduce a multiplicative factor y. In the limit

s — oo the amplitude is strongly damped for t,,, t5, t;,7, # 0 and we may put y equal
to zero. Thus, the only important term in Eq. (11) is that with k = 0.

4. Summary

We found a simple asymptotic expression for some kinds of multiloop diagrams
which, after neglecting the correlations between nonsubsequent reggeons, can be used in
practical calculations.

The author is grateful to Dr S. Jadach for reading the manuscript critically.
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