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We derive an explicit form of the relativistic radial equations for two spin-1/2 particles
with a static interaction energy. We solve these equations for Coulomb bound states with
/=0 in an implicit way after applying the weak-potential approximation. This solution
reduces to the Sommerfeld fine-structure formula in the one-body approximation.

1. Introduction

In the mid-fifties we formulated a systematic method of evaluating the interaction-
-energy operator in the one-time relativistic wave equation for a many-particle system.
The starting point was either [1] the Bethe-Salpeter equation for this system or [2] directly
a formal field-theoretical Hamiltonian. The same problem for the S matrix was also
generally solved [3]. We described at the same time a separation method of angular co-
ordinates from the one-time relativistic wave equation for a two-spin-1;2-particle system
with a general interaction energy [4].

Since recently the binding problem of two spin-1;2 parnicles atouses much interest [5]
due to the discovery of the narrow resonances in e¢'e~ channel, we publish in the present
note the result of separating the angular coordinates from the one-time relativistic wave
equation for such particles with a static interaction energy (cf. also [6]).

* The work supported in part by the NSF under GF-42060 and GF-41959.
** Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.
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2. Relativistic radial equation

Let us consider a system of two spin-1/2 particles satisfying in the center-of-mass
coordinates the following wave equation

[E—c(@" - p+pVm V) —c(=a® - p+PmPe)=TV(N]y(F) = 0, (N

where 7 = ¥ ~X®,p = —ih¢/or and I is built of y'" and y(? in a rotationally invariant
way, e. g. I’ may be 1 —a'™ - 2 or BV @p2), The equation of form (1) can be derived
from the quantum field theory in the static one-boson-exchange approximation (cf, e. g.
(1, 2)).

Making use of the separation method of angular coordinates described in Ref. [4]
we obtain from (1) the following radial equation (for its derivation see Appendix)
d 1+ @ af® +a(21’a(22))]
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and j denotes the quantum number of J2, while
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J=rxp+ 5 (GARE ) “)
is the total angular momentum.

Since in equation (2) the Dirac matrices a5 and «$* appear only via their product

a$Va?, we can use there the following particular 8 x 8 representation
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where o; and 1 are 2x2 Pauli matrices, while

_(09, g, [t 0O
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From the matrices (5)—(11) we can calculate

D
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o) = —ialValY = o, xIx1 = ! D\,
0 0‘1/

. 0 1°
o = —iaPu? = 1x1x0, = (1,) 0 )
06" = —aiPa{VuPuP = —0, x 065 % 05,
0§60 = —aPaPaPalP = —6, x 0, %03,

but not ¢{", 6" and ¢?, 0¥ separately. In (13) and (14) we use the notation

10
01

D _ g, 0 D _
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From (13)—(16) we obtain also

h?

1,2
§% = " (0" +0P) = % (6P +3)

2
h
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and

2

h? h h
S2 = " (6" +P)? = 5 (6"eP +1) = 5 (—o3x03x0;,+1).

By means of (19) we get for the quantum number m? of S? the following values:
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m?

01 101 00

where
v = (y,)

is given in the representation (5)—(11). The operator
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cannot, however, be written in the 8 x 8 representation (5)—(11). So, m, is not determined
for v, if m] # 0O (it means that in the case of m? = 1 signs of m, are mixed).

_Using the matrix (18) we deduce the following conditions to be satisfied by eigenstates
of §2 corresponding to s = 0 and s = 1:

0= T v = T =it = s =y =0 (23)
and
vit=we ey = (24)
In general we have
p =9y (25)

because of the spin-orbit coupling involved in equation (1) or (2).

3. A representation of the radial equation

Making use of the representation (5)—(11) and the conditions (23) and (24) we
obtain from equation (2) the system of eight equations which we present in Table I, in-
troducing the notation

0 W;:l"’#g:l
s=0 — s= — s=1 £ e §=
fisvyw, L=ve o, =97, Jo= 9 l, 815“‘—“"2 s
s= 1 s=1 s=1 5=1 s= 1 s=1
_ Y2 s _ ¥ tvs _ ¥ T tys
=, = g (26)

and putting I = 1. Notice that for j = 0 this system splits into two independent subsystems
(of four equations each) for f7s and g’s separately. Then, in the equations for g’s (which
all have s = 1) there is no mixing of s = 1 with s = 0. It implies that all g’s correspond
to [ = 0 (to avoid spin-orbit coupling). In this case, however, all g’s must be equal to zero
because j = 0 cannot be built from / = 0 and s = 1. Thus, for j = 0 we are left with the
system of four equations for f’s. By eliminating f; and f, we then obtain from Table I
the set of two equations for j = O:

d K(1)+K(2) 2
—fo+3 [8"1’_ (_‘ l]fs = 0,

dr e—v
d ) (1Y __ (212

- (— + —)f3+%[s—v— =) :lfz = 0. @7
dr r £—v

Obviously, f, and f; correspond to (s = 0, m; =0, [ =0, n; = 0) and (s = 1, m, = 0,
I =1, m; = 0), respectively (because of j = 0 and m = 0).
If we introduce the notation

W = (28)

Ae = e—x
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TABLE 1
Equation (2) in the representation (5)-(11)

d 211 (2) e—v
LAy + =0
dr 13 2 s 2 f
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=+ A= + + o
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. g L = 09
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_ : g3t —— 84— " 7 = 0.

we get from equations (27) in the limit of (4e~2)/(x'"’ + x‘*’) - 0 the radial non-relativistic
Schrodinger equations

1 /d? 2 d> to—4 0

2icdr2+rdr v—de\f =0,

1/d* 2d 2
—5;;‘ ;{}:5'{-75—;2* +U—A8f3=0 (29)

corresponding to / = 0 and / = 1, respectively.

4. The case of weak potential
For practical calculations it may be of interest to consider equations (27) in the

case when v%/e? can be neglected. Then 1/(e—v) ~ (H— -'i)/ € and these equations take
¢

/
approximately the form

d 1 d 2 1
’d*fz" (— +k1v)f3 =0, <'— + T)fa" (* “kzv>fz =0, (30)
r a, dr 7 a,



1 e KU)+K(2)>2 ) 1 : R A
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D e\ 2 (D (22
klz-}[l—%(*—g——m)], kzs%[1+(~ - )] (31)

From equations (30) with the substitution

1 - =f
Jas = P Uy (32)
we come to
d 1 1 1
————— u— | — +kvjuy =0,
di i a a,
d + ! ] ! k 0 33
— 4 — = —Juz—{— - = 0.
dr r a) > a, e G3)
If v - 0 for r — oo, the asymptotic behaviour is f3 5 ~ e~ "%, where
1 1 I ‘ ] (D2, (322
L \/ 22y TR (34)
a  Ja,a, g

So, the bound-state condition a > 0 implies that |k —k®| < g < k4P,

5. Coulomb bound states

In the case of bound states in the Coulomb potential,
z ¢ 35
o= = o= —,
r 4rhe (33)
equations (33) can be solved by the standard polynomial method (cf. {7]). Inserting
Uyy = 3, @Ity (36)

v=0

into (33) (with (35) applied) we evaluate

_ 2 (12 (2)2 (1)2  (2)2\2
od K +K K —K
y=Vi—kiko? = [1— —| 142 ———— + r 37)

4 £ e

and

1,41 ky k
' f=1(_1,_%>. no=0,1,2, ... (38)
o 2\a, a,
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The algebraic equation (38), where a; = a(¢), k; = ki(¢), a = ale) and y = y(¢) are given
by (31), (34) and (37), is an involved condition determining the Coulomb energy levels

€ = 6}1,-]"—‘0‘

Two limiting cases are of interest in order to establish the relation to the Dirac
equation (and Sommerfeld formula) from one side and the Schrédinger equation (and

Balmer formula) from the other.
In the first case we write

KD

— = 0.
K(Z)

e = kP +tep,

Then, from (38) we obtain after some calculations

mtw_ L o2
o (D2
\/ 1
where
Yo = \/1—a2 .

Hence the Sommerfeld formula follows:

Pty

E&p = —mmem———— |
o 2
(G2
"r'*‘)’o

Notice that in Sommerfeld formula we have in general

o= VUo+D* =, jp=%4,3%,%, ...

and the principal quantum number is
n=n+jp+t=123 ...

Thus, in our case j, = 1/2.
In the second we put

As

s

e = kW4 kP4 4e, )
+K

Then, from (38) we evaluate

n 2k
—=%\/———, n=n+1=123..
o —Ae

Hence the Balmer formula follows:

- 0.
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6. The case of strong potential

If K +x® is very large in comparison with ¢, then the binding energy de is very
large too (and negative). It means that in this case we have a very strong potential (which,
considered globally, is attractive and has the negative sign) and, therefore, £%/v? can be

€
neglected in (27). Then 1/(e—1) ~ — <1+ —)/v and we get approximately the equa-
v

tions
d kM 4 k)2 kD 412N
—fa+3 l:s—v+ ( ) + ( 3 ) ]fs =0, (48)
dr v v
d 2 D (22 D) 2,
—<—+—)f3+%[a—v+( ) +( p ) :If2=0.
dr r v v

The counterpart of the radial Schrodinger equations would have now for k) = x® the
form (neglecting terms with dv/dr):

1 [fa* 2d ,
) 2t ) TraN—e /=0,

! & + 24 _2 Fo(r)—e|f3=0 49)
— — —_ e = 1 ec(F)— =
k() \dr*  r dr r? it “ | ’ (
where
to(r)) o(r) kP42
Kerr(Fr) = ";i—l s te(r) = PN —’L@—* . (50)

Thus, in the case of strong (attractive) Coulombic potential,

®g

o) = = (51)

the “‘effective potential” is

a2 kP4 k(2?2

r 04

Vere(r) = — r (52)

S
containing the celebrated linear term [5]. In equations (49) the reduced mass « is replaced,
however, by the “effective mass”

4
o) = 2. (53)

r

Obviously, in the case of (51) &%/v? cannot be neglected locally for too large r, nevertheless
it may happen that it can be neglected globally in bound states.
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APPENDIX
Separation of angular variables in equation (1)

Introduce in equation (1)

0
P = —'ihﬁ_a (A-l)

0x;
rewrite the corresponding differential equation in spherical variables
x, = rsindcos @, X, =rsindsing, x3;=rcosI (A2)
and multiply it on the left by the operator
UG, ¢) = exp [§ (5040 +2P)9] exp [3 (@D +aPuP) ). (A3)
In this way one obtains the equivalent equation

K 141 (a(l)d(Z)_{_a(l)a(?—))
.o (1) ) 2 1 %1 2 42
e+i(ay ' —a — +
{ (24— )[ar -

i1 8 G,
+ g i o ( whew)|
Pl 1 9 1)
_ _j_ [gn—é P -1 o2{VaV ctg §—alPuf? (% +3ctg 8)]
—-—ﬁ“)K(l)—ﬁ(z)K(z)—FU(l")} @@, 3, @) =0, (A4)
where
E o omie? V(r)
— @ _ ; = A5
& he’ * he ur) he (A-5)
and
1; = U’l/)_ (A.6)
In the derivation we have made use of the relation
[[,Ul=0 A7

which is valid for all rotationally invariant systems (cf. [4]).
Introduce now the spinorial spherical harmonics

Z%cos 9) = 3 (1 + Vo ValP i) Po(cos 9)+3 (1 —aPaiValP )Pl (cos 9) A.8)
J J J
and verify easily that it satisfies equation

- i,
P l:—% ool ctg 9 —olPalV (% +3ctg 9)] Z)(cos 9)

= Vi(j+1) Z%cos NaiaPu? (A.9)
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and the corresponding equation with exchanged upper indices. Due to rotational invariance
the result of the separation of angular variables cannot depend on m and, therefore, we
can use the function

P(r, 9, ) = Zj(cos Ny(r) (A.10)

as an “Ansatz” for the solution of (A.4). We obtain in this way for y(r) the equation (2).
The general theory of separation of angular variables in the two-spinor problem
can be found in Ref. [4].
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