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MOTION OF A PHOTON IN GRAVITATIONAL FIELD
By E. N. EpikHIN AND N. V. MITSKIEVIC

Chair of Theoretical Physics, P. Lumumba Peoples’ Friendship University, Moscow*
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Equations of motion for a non-quantum-theoretical “photon” in curved spacetime are
obtained by use of the Noether theorem relations and normal coordinates. Simple cases of
photon world lines in certain gravitational fields are considered.

1. Introduction

It is shown in papers [1-6] that the velocity and momentum of a classical particle
possessing intrinsic angular momentum (“spin’’) are non-collinear. This peculiarity is
of no importance in the Newtonian theory of gravitation (in contrast to General Rela-
tivity) since the force acting on a particle there does not depend on its spin. Studies of
electron motion {7-10] with the help of the WKB method (a quasiclassical approximation
of Dirac’s equation) show that an electron bahaves as a classical particle possessing in-
trinsic angular momentum. It is also worth investigating photon motion from this stand-
point. The momentum and Poynting vectors (the latter represents the velocity direction
of the electromagnetic wave) were found to be non-collinear for light in paper [4].

2. Noether theorem relations

We begin the derivation of the equations describing photon motion in curved space-
-time with an analysis of the Noether theorem relations in the form using covariant deriva-
tives as was done by one of the present authors in [11] (““g-covariant relations). We racall
that in that paper Lagrangian % was defined as a function of fields’ potentials &, their
Ist derivatives «p,, and the metric tensor g,,, B being a collective index

¥ = g(dﬂa dB;a’ guv)' (1)
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As in [11], we define spin density, 0%, canonical energy-momentum tensor, 1%,
and metric (symmetric) energy-momentum tensor, £*° (in fact, tensor densities) as

0¥ 0L
M = o ".],;—&1 ',;f] - o g, 2
o 6.5%3;[“( Bl Blo-?) oS Bl (2)
%, = o0& <t £ (3
L a&{s;“ Bie o Y )
0% 0.F 0¥
g = 2 = —2(0 —<—) ) )
08uy 08y 8uv,a/

Here, o7, are the transformation coefficients of the potentials </ under infinitesimal
coordinate transformations 'x* = x*+&(x); ‘A p('x)— A g(x) = Ap|',L". Using these
definitions, the Noether theorem relations take the form

1%+ MT R = 0, 5)

=t -M* 6

MY, = =M%, )

This corresponds to Eqs (67-69) of Ref. [11] for the case where the bispin vanishes. The
Riemann-Christoffel tensor is used in (5) in its standard form, o p(,.0 = —3 IR 4.

It is worth mentioning that Eq. (5) follows from (6) by virtue of covariant conservation
of the metric energy-momentum tensor. Using the definition of antisymmetrization,
Ay = 3 (A~ 2,,), Egs (5) and (6) yield the relations:

—t 5.+ IR e = O, (8)
— ol = o, ©9)

which is the starting point of the following analysis.
First, the spin density, canonical and metric energy-momentum tensors of the elec-
tromagnetic field described by the Lagrangian

&= - i;—g F"F,,, whete F, =, ,~d,, (10)
are to be represented by:
M, = —g A F", (11
=V —g PP, — L5, (12)
T = V=g (4 FUF 48" — F*F,"). (13)

Details of derivation of the Noether theorem relations can be found in references [12, 13],
as well as in the previously mentioned paper [11].
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3. Classical characteristics of a photon

We will now define the dynamical quantities characterizing a photon (from the classical,
not quantum point of view). Admitting that the electromagnetic field is concentrated in
a small region of spacetime (wave packet), we define linear and angular momenta as

P(y) = [t ,z.do, (14)
S(y) = =2 f (t*x"+ M1 do, (15)

where y* = y*(+) describes the world line (parametrized by ¢} of a photon if it is taken at
the origin of the normal coordinates x*, and 7, is a unit timelike vector orthogonal to
the 3 dimensional integration element do. For generality, the ““orbital” angular momentum
is included in $*” (i. e., the Ist term on the right-hand side of Eq. (15)), but its presence
there does not influence the final form of the equations. For these equations (which will
completely determine the world line y*(¢)) it will be assumed that S** has spin origin only.

We give here only the main points of the derivation of the photon equations of mo-
tion since a very similar approach has been used to get the equations of the motion of
non-light-like particles endowed with spin (see Ref. [3]).

From the definitions of the normal coordinates it follows that

X" = x" =t —ta" + O(1?);

ox'*

= S —tah + O(1Y), (16)
0x

where t* = dy”/dt is the photon velocity, a*, vanishes on the world line, and the primed
quantities correspond to ¢ # 0 whereas non-primed ones — to t = 0.
The definition (14) gives

Py)y = | 't%,/tdo’ (17
which with the help of Eq. (16) can be written as

P(y) = 5 t* rdo+1t j’ a gt do+0(1%). (18)

Then by integrating Eq. (8) and using Gauss’ theorem, we get
J i, mdo~P,(y)— [ (T A2 5+ MP R7 5, (dx) = 0. (19)
Adding (18) and (19) and dividing by ¢ we have

d

dx
— P,— J. al t yr,do— j(l’ At + IR 5 @) _

= 0. 20
dt dt (20)
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Quite similarly from (9) and (15), we come to the equation

i t
C% Suv+2P[vvu]+2J (tzlvau]_ao,[vxu]t 7;+a‘avgna[ua]_afttgna[t"]).cada
2 - olv, ul qnar' Ra“[v A ~ur:)nr[eﬂ evgrr[u' (dx)
- (.QFa.x +7 celN g X +Ig, —F,. L.Q])W=O, (21)

when Eqs (16) are taken into account. We recall that normal coordinates have the following
properties:

2 8
at = 5 R% g, X5 %P0+ .., (22)
zﬁy ..... 3) = Oﬁ (23)
08" = =3 R 5yl (24)

Here Eqs (23) and (24) are written at the origin of normal coordinates, and &7 = ¢@
= 1 (&% + &%) is an arbitrary quantity symmetrical on both indices.

For future use it is essential to assume that all moments of M}, except the zeroth
one, and of t%,, except the zeroth and the first ones, vanish. Then one of the desired equa-
tions follows at once from Eq. (21):

D
S = PP (25)

In order to find the next equation one has to make use of relations
(QREeolty  — R 4 xR g aREA — xetleed = ¢, (26)
(%, xPx7) =t X =t xP — 1% Tl XP X7 4+ xP XTI R @n

These equations are Eqgs (8) and (9) written in normal coordinates. Integration of (26), (27)
leads to a sequence of relations similar to (17)-(20) in which it is possible to exclude
terms of the form [...(dx)/dr. Finally, we get the desired equation in the form

b 1 QB
o Pu= 1 5P Reyy (28)
with
D gwr — gping, (29)
dt

The system (28), (29) is evidently incomplete, so we add to it an auxiliary condition

S®P, =0, (30)
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thus completing our description of the world line of the classical “photon™ motion.
A discussion of a similar problem for non-light-like particies is given in references [3, 14],
and massless particles are discussed in paper [15].

4. Equations of massless particle motion relative to a given frame of reference

Eqs (28), (29) are invariant under changes of the parameter #; this property can be
traced in the process of derivation of the equations. Changes in quantities *, P,, S*"
resulting from the translation #(r — ¢’) are given as:

o axt dt
¥ = = e P
dt’ dt’
P¥(x) = P(x); S™(x) = S"(x) (31)

(see (14), (15)). With the help of these relations one can gauge the parameter ¢ by the
condition 1,0 = 1 (or v,* = 1 if the world line is not lightlike). We give priority to
the first gauge of this parameter. In this case, with the help of Eq. (29), the momentum
can be expressed as

P* = &'+ 8”1, (32)

where the notation & = P,t” (photon energy) is used, and dot means the covariant deri-
vative with respect to the parameter. Then the system (28), (29) takes the form

D VA a

7 (" +8"1) =% S ﬂvyRaﬂyf‘, (33)
D v o*

E s (5“—1:“1)“) (5€“Tvl’ﬁ) = 0. (34

Returning to the spin tensor, we represent it without loss of generality by using the
monad vector t*:

Sy = ZS[“rv]—Eaﬂmt“s‘B‘ (35)

Here E,p,, is the axial tensor of Levi-Civitd, s* = S¥1; = § E¥*'5;S,, is 3-spin, S, = §,,7°
is a vector characterizing the position of the energy center in the monad frame t*. The
auxiliary condition (30) leads to relations

S*P, = 0, (36)
S*'Sy, = —45,5* = 0, (37
S, = Eu,,1°"P/6, (38)

thus the invariant $*'S,, is conserved such that
“

§*8,, = 2(8*S,~s"s,) = const. (39)
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The change of the momentum modulus along the trajectory is written as

d d . . D
(?l M‘ = a—l (P“P‘) = S ﬁUyP‘sRa,’},a - -'2%: ;it“ (S pSya)RaB‘,'é’ (40)
or
d 2 1 aff oyo aff oyé A
ML SPSTR ) = & STSTR g0 (41)

From expression (38) it can be seen that the angle between 3-spin and 3-momentum equals
arc sin ( §.é‘/’,f",~;§ ). This angle vanishes if spacetime is flat, and the gauge is Coulombian
{see, e.g., [13]); then S* = 0. In order to retain this property under another gauge of the
monad (frame of reference) it is necessary to pass to a new Coulombian gauge, but if
spacetime is curved then this can be done in general at the initial moment of time only,
and later r,, 3-spin, and 3-momentum vectors change their mutual orientation along the
trajectory (the monad field being given).

On can make use of arbitrariness in the monad gauge and put on the trajectory
the condition

St = 0. (42)

This frame of reference is analogous to a co-moving system in dynamic of particles with
intrinsic angular momentum, when the corresponding condition can be written as
P = 0. Itis worth noticing that in flat spacetime, condition (42) determines the Coulom-
bian choice of the field gauge. In the case of (42) with "1, = | and from Egs (32), (35)
it follows that

S* = yE**1,P,, (43)
Pt = 80" —yE* 1 1,P, (44)
or
(1=’ 1, 7)P* = " =y E* " 10,0, — 261,000 — T0,1"), (45)
(1 =921,1)8" = yEE" 1, (05— y21,6%7,) + 289 (0 + 1)), (46)

So the momentum and the spin in Egs (28), {29) can be expressed through ", /¥, 7. In
this case the motion integral (39) takes the form

58" = yAM*—&?%) = const. 47)

For the case S”1"R,;, = 0 the obvious solution is P, =0, S,, =0, P, = &r,.
Such a solution is adequate in spacetime systems of constant curvature, R, ;,
= K(8,18v, —£u,8,+), and in particular in flat spacetime. It is also valid for radial motion
in the Schwarzschild field, motion along the symmetry axis in the Kerr field, radial motion
in the Friedmann spacetime. In these cases light propagates along lightlike geodesics.
All these assertions are easily verified by direct calculation. Moreover, it is not difficult
to show from (28), (29), (32) that if the photon energy is large and varies slowly along
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the trajectory', Egs (28), (29) yield the geodesic motion equations (the geometrical optics
limit):

D .
— P =0, P =0. (48)
dt
These correspond to the bicharacteristics of the Maxwell equations, in that they contain
no information about the spin. Notably, Eqs (48) do not depend on the frame of reference,
though the small parameter yz* depends on the monad t,.

5. Motion of a photon in the Schwarzschild field

Consider a more complicated example of photon motion in General Relativity, namely
the scattering of light by the Schwarzschild field. For this we use homogeneous coordinates,

C 2
- o
r
ds* = | —= dﬂ—(1+ ;) (dr? -+ r2d0? + 2 sin? 0dg?), (49)
1+ —
r

as well as the well known solution of the geodesic equation in the ‘“‘equatorial” plane.
The first integrals of this solution can be written as

d 1\* 1 1 (1+C/n)° (1= CJr
- + 3 = TN (7( — v = = COHS[,
dg r r B (1=Ciry L+ Cjr

d
§r(1+Cin* =F = af = const 0

They correspond in the Ist approximation to the hyperbolic trajectory

l 4C
" = —ﬁ? (I +ecos ¢), (51
the eccentricity being ¢ = (1+ %16C?)'"2, This solution can be seen, e.g., in paper [16].

We now take the equations for /*, the deviation of a particle with spin from a given
world line (see Ref. [17)):

D
P

— Pu= —R% 5, PtV +% SPUR

aByu

+3 SPUR gy, +4 STVIPR g s,

D .
ST STRY ., 1P+ SEUIR g, 2P M0~ 2P, 17 = 0,

D
— S5 =2P, Ly, (52)

! For the choice of monad (42) this corresponds to the value of the dimensionless parameter jy7,] <1.



where
P o= P{+AP* = &4+ 4P*, S{" = S5’ +48*.
If 1, 4S,,, AP, are small (it is natural to suppose here that the deviation from a geodesic

is small), and restricting ourselves in Eqs (52) to linear terms in /,, 4S,,, and 4P,, we get

b Pi=3Z%0R, b % = 2p, I, (53)
dt " " dt

Here Z* = 281"+ 84" is the sum of the orbital (relative to the world line under consid-
eration) and spin angular momenta.
If the parameter ¢ is determined by the condition 7,t* = [, the momentum equals

Py, = v, 42,7 (54)
Using now the auxiliary condition (30), one can write the resulting angular momentum as
IM = E(yr o EP 42100, (55)
From (30), (53), (55) follows the motion integral
Z,I" = &%? = const (56)
or
y = ayo/€, Yo = const. (57)

Multiplying the first Eq. (53) by &v* and making use of Eqs (48) (equivalent to (50)),
we have

P, 0" = &*[*v, = const. (58)
We demand, then,
Po,=0, I, =0 (59)

(this agrees with the initial data), and define the monad field as
=686 ——7 - (60)

Returning to the 2nd equation of system (53) and rewriting it as

Ly 3 B -

I —1,0%) (S —1,f) = 0, (61)
insertion of X*’ from Eq. (55) into (61) gives

YT 0p(E#W + 20, E¥F 4"y = 0. 62)
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This equation is satisfied identically in the O-th approximation in C/r when Eqgs (59) are
taken into account. Only the first equation of system (53) remains to be considered. Since
in this equation the spin force

o
Fi= —3 SR, = %(vlv3R2.323+v3le?112)5‘2‘ (63)

acts on the photon only orthogonally to the equatorial plane, we take the form

"= I8t (64)

for the solution.
Somewhat tedious calcuiations (though only in the Ist order in (/r) lead to the single
equation

d*l 6C
E0wie S0 o, (65)
do fr
. o o 1 . . .
Since in the Oth approximation Eq. (51) gives — = E cos ¢, v! = sin ¢, Eq. (65) is easily
r
integrated to give
C
| = ;/}yrz—‘l sin 2¢. (66)

We see therefore that the deviation of a photon from the equatorial plane is negligibly
small and symmetric for opposite orientations of spin, i.e., with the approximation used,
the plane of polarization does not rotate. Far more interesting theoretically is the 2nd
approximation in spin since

M = (1 =91 M 4928 [0, +(1,0%7]),  1=7%1,1° > 0. (67)

This implies the possibility that for the next approximation v? # 0, thus leading to the
rotation of the polarization plane.
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