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Time and space reflexions of spinors are investigated. It is assumed that the connec-
tion between spinors and null bivectors, discovered by Cartan and Whittaker, is valid in all
reference frames. It follows that both time and space reflexions of spinors are antilinear
operations and that there are two kinds of spinors, just as there are two kinds of Euclidean
vectors. Penrose’s picture of a spinor on the sphere of complex numbers can be drawn only
for one of the two spinors.

1. Introduction

This investigation originated from our desire to understand the notion of spinor
flag introduced by Penrose {i]. It turns out that there are two kinds of spinors, whose
flags behave in a geometrically different way under reflexions. This result seems to be
new, at least Penrose does not mention the second spinor which — unlike the first one —
cannot be drawn on the sphere of complex numbers.

Our method consists in the following. We start from the connection — discovered
by Cartan [2] and Whittaker [3] — between spinors and null bivectors and assume that
this connection is valid in all reference frames, including those which differ from the
original one by space or time reflexion. As a consequence we obtain that both space and
time reflexions of spinors are antilinear operations i.e. they involve complex conjugation.

Several authors noted [4], [S] that it is possible to represent reflexions of spinors
by antilinear operations. However, as far as we know, it has not been noted that within
this approach there are two geometrically different spinors.

2. Three kinds of densities

The Lorentz transformations are linear substitutions

such that the quadratic form

Xx = (XO)Z_(XI)Z __(XZ)Z _(x3)2
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is left invariant:

(XOI)2_(xll)2 _(XZ’)Z_(X3I)2 = (X0)2 _(x1)2___(x2)2 __(x3)2.

The Lorentz transformations are called:

proper transformations if A5 > +1, det (4%)

time reflexions

\Y

space reflexions if 43

A

total reflexions if AY

= +1,

if AY = —1, det(4*) = —1,
+1, det (4¥) = —1,
—1, det (4¥) = +1.

Vectors are geometric quantities whose components transform like cartesian coordinates.
There are three geometrically different transformation laws which coincide with that of

a vector for the proper Lorentz transformations:
x* = sign (4g)A44x",
x* = sign (49 det (45)44 %",
x* = det (A43)ALx".

Geometric quantities with these transformation laws will be called respectively densities

of the first, second and third kind.

There is a conceptual difference between purely analytical operation of time reflexion
and the operation which some German authors call Bewegungsumkehr. We postulate,
however, that analytically defined time reflexion should be numerically identical with
the result of Bewegungsumkehr. For example, it is clear that under Bewegungsumkthr
energy of a particle remains positive, which means that the so called energy and momentum

vector is not actually a vector but a density of the first kind:

p, = sign (A9)A}p,.

Four kinds of vectors

TABLE I

Quantity Transformation law

Physical examples

vector Xt = A‘v"xv

translation

vectorial density of the first kind P = sign (A7) A4 p

total energy and momentum of
an isolated system, electric cur-
rent, electromagnetic potential

vectorial density of the second J* = sign (49) det (A;') AXGY

kind

magnetic current (if it exists)

vectorial density of the third wh' = det (A;') AW

kind

the Pauli-Lubanski “vector” of
an isolated system
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A universe which contains a single particle does not have the time arrow since the time
arrow can be defined only by a time-like vector.
It may be seen from Table I that the three kinds of densities occur naturally in physics.

3. Two kinds of bivectors

What has been said about vectors holds for other quantities as well. There are a priori
four distinct transformation laws for bivectors:

1
sign (A49)
F,, = » ACALF i Fo = —F,,
sign (A49.) det (4%)
det (42) J
However, there exists an invariant duality relation
Foo=1% s;tvaﬂGaﬂs
G, = —1% suvapFaﬂ,
where ¢,,,5 is the totally antisymmetric density of the third kind such that ¢4,,3 = —1.

Because of the duality relation antisymmetric tensor is equivalent to density of the third
kind and density of the first kind is equivalent to density of the second kind. Thus there
are only two distinct bivectors.

Two important physical quantities — the electromagnetic field F,, and the angular
momentum and centre of mass integral M,, — are densities of the first kind:

F ., = sign (Ag)A3 AL F 4,
M., = sign {AQ)ALALM 4.

For this reason it will be convenient to consider density of the first kind and density of
the third kind as fundamental objects; antisymmetric tensor and density of the second
kind arise from the fundamental objects by means of the duality relation.

TABLE II
Two kinds of bivectors
i

Time reflexion ! Space reflexion .

X% = —x® | X0 = 4+ x0 Total reflexion
Quantity = oy XM =

ik=1,2,3 LWk=1,213 n=0,1,2,13
Bivectorial density of the Forir = Foi Fope = —Fy; Fyy = —Fpy
first kind Fip = —Fy Figr = Fi
Bivectorial density of the Sorir = Soi Sorir = Soi Surv = Spy
third kind | Si'k' = ""Sik Si'k’ ='—S0i
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Table II gives the results of time, space and total reflexions for the two distinct
bivectors. It is seen that under total reflexion components of a density of the first kind
do change sign while components of a density of the third kind do not. This resembles to
some extent behaviour of Euclidean polar and axial vectors under space inversion.

4. The Cartan-Whittaker bivector of a spinor
Bivector F,, is called special or null if
F F* = 2F G+F5+F i —Foi—Fo3—Fo3) = 0,
S”W’;Fquaﬂ = 8(Fo1Fa3+FosF31+Fo3F;,) = 0.
The two equations can be written in the form
(iFOl—F23)2+(iF02—-F31)2+(iF03-F12)2 = 0.
Hence, there are two complex numbers #® and »! such that
iFO'F2 = (u%)?—(u')?,
iFO2 3 - i[(u0)2+(u1)2],
iF?—F'? = —2u%".

Cartan [2] and Whittaker [3] showed that u“, 4 = 0,1, are components of a spinor.

It is clear that u* determine F,, uniquely while F,, determine u* up to an over-all
sign (since the product %! is determined). Thus the Cartan—Whittaker relation establishes
a one to one correspondence between spinors and null bivectors.

We assume — in agreement with the original treatment of Cartan — that the Cartan—
Whittaker relation is a definition of spinor. This assumption allows us to calculate compo-
nents of spinor in a new basis. Indeed

W) = 3 [F?=F2+i(F°' = F1)],
W' = [FO4 F2 —i(F® + F)),
ulu' = 1 (F'2~iF%%),
and simuitaneously
W) = § [F¥ — F¥ 4 i(F"" — ")),
') = $ [FO% + F*> —i(F”" + F'™*)),
uul = § (F' —iF%?).

Thus the connection between u? and »* can be calculated from the connection between
F*”" and F" which (for pure reflexions) is given in Table 11.
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5. Two kinds of spinors

The Cartan-Whittaker bivector can be either a density of the first kind or a density
of the third kind. Hence there are two kinds of spinors, one generated by density of the
first kind and another one generated by density of the third kind. They behave identically
under proper Lorentz transformations but differently under reflexions. Transformation
laws for both kinds of spinors are given in Table III; they were calculated as indicated
in the previous section. It should be remembered that components of a spinor are determined

up to an over-all sign; in Table III in each case one sign is chosen arbitrarily but may be
changed at will.

TABLE 11

Two kinds of spinors

Time reflexion Space reflexion : .
$O = O X% = 40 Total reflexion
Quantity i o = NI W=
*‘ i=1,273 i=1, 23 n=0,1,2,3
Spinor of bivectorial u = u® = ot ' = iyt
density of the first kind u' = —y° W = —® A=01
' — , _ i ,
Spinor of bivectorial w® = w! wo = w! ! wA = —ypd
density of the third kind w' = —w° wi' = —yo i A=01

The difference between two kinds of spinors comes out in a simple way if one treats
reflexion as a motion i.e. creation of another spinor.
Let a be a vector and u a spinor with components u?. Reflexion of the spinor u in
the plane orthogonal to « is the spinor #' with components
1A a AB mn

u € O' u

\/laal

if v is a spinor of bivectorial density of the first kind and

if u is a spinor of bivectorial density of the third kind. Here o’ , are components of the
Pauli matrices, ¢*® is the invariant antisymmetric spinor such that e°! = 1. These formulae
are equivalent to those from Table III, if one assumes that components of a spinor are
equal to components of the reflected spinor in the reflected basis, which seems fairly
obvious.

The vector a, which determines the plane of reflexion may be time-like or space-like
but cannot be null. It is impossible to define reflexion in a null plane, just as it is impossible
to see oneself in a mirror moving away with the velocity of light.
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6. Penrose’s pictures of the two spinors

To visualize the difference between the two kinds of spinors we shall construct Penrose’s
pictures of both spinors on the sphere of complex numbers.
Each null bivector can be written in the form

Fﬂv = ﬁuvaﬂkaaﬂ,

where
kk =0, ak=0, aa= -1.
If F,, is the Cartan-Whittaker bivector of the spinor u, then
K = u®u®+u'u',

k! = uul+u'u®,

1 — —
K2 = — (uOu’ ~u'u®),
i

K = uu®—u'u'.

Using the results from Table Il one can show that, for both kinds of spinors, k is a density
of the first kind:

k" = sign (A9)AYK".

This may be seen also from the fact that k° is necessarily positive.
Suppose that F,, is a density of the third kind; then « is a density of the first kind.
Let us form the linear combination

k+ea

which — for infinitesimal ¢ — is a null vector. Direction of & may be drawn on the sphere
of complex numbers as the number

k' +ik?
KO+ k3

If we draw in the same way directions of all vectors k + ea, we obtain a little segment (Fig. 1).
The segment is oriented since ¢ is a scalar and we can tell the difference between ¢ > 0
and ¢ < 0 in each reference frame.

Suppose now that F,, is a density of the first kind (i.e. behaves like the electromagnetic
field). a is now a density of the third kind and in the linear combination k+ ea,e must
be a scalar density of the second kind. Therefore the sign of ¢ has no geometrical meaning
and we cannot tell the difference between two ends of the little segment (Fig. 2).

Penrose’s picture of a spinor of bivectorial density of the third kind is complete:
it allows to construct the spinor up to a real factor. The picture of a spinor of bivectorial
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density of the first kind is not complete: it determines the phase of the spinor only up to
+ /2.

Penrose’s picture of a spinor leads almost inevitably to our definition of the reflected
spinor.

Let a be a space-like vector which determines the plane of reflexion. The set of all
null directions orthogonal to a forms a circle on the sphere of complex numbers. The

Fig. | Fig. 2

Fig. 1. Penrose’s picture of a spinor of bivectorial density of the third kind: a point with an oriented
direction on the sphere of complex numbers

Fig. 2. Penrose’s picture of a spinor of bivectorial density of the first kind: a point with an unoriented
direction on thc sphere of complex numbers

circle is a picture of the direction of a; the picture is complete i.e. it allows to construct
the direction of a. Let u be a spinor of bivectorial density of the third kind (Penrose’s
spinor), whose complete picture is a point with an oriented direction on the sphere of
complex numbers. Consider the pictures of the direction of a and of the spinor u together.
Reflexion of u in the plane orthogonal to a should be a spinor determined in a unique
and Lorentz invariant way by v and a. There is only one such spinor, namely the spinor
obtained from u by the transformation of reciprocal radii. This purely geomerrical definition
of the reflected spinor is identical with our previous analytical definition, based on the
Cartan-Whittaker relation. Thus it is seen that the definition of reflected spinor which
involves only a single spinor is both natural and inevitable from the geometrical point
of view.

Bade and Jehile [4] define the reflected spinor in a way which is equivalent to the
definition by means of reciprocal radii. But — as far as we can understand this paper —
they consider only space reflexions and only one spinor, which seems to be the spinor
of bivectorial density of the third kind.

7. An axiom on complex multilinear forms

The theory of reflexions developed so far may be based on a single axiom concerning
behaviour of complex multilinear forms under reflexions.

Let ¢ be again the vector which determines the plane of reflexion and let x be an
arbitrary vector. The vector
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is called reflexion of x in the plane orthogonal to a. Let f(x) be a linear form i.e. a real

function of vectorial argument such that for all real x, f and for all x,y

Sloax+ Bvy = af(x)+ B,
There exists a vector f such that

flx)y = xf.
It is easy to show that
X =
so that
S1(x) = fx).

Suppose now that f(x) is a complex linear form i.e. a complex function of vectorial
argument such that for all real «, f and for all x, p

Sflax +By) = af(x)+ Bf(y).

It is not true anymore that f(x) is a product of two vectors and therefore it is impossible
to find the reflected form from what is known or assumed about vectors.
We define the reflected form by means of the formula

J'(x) = f(x).
This is an axiom. The axiom is certainly consistent with other axioms of space-time geo-
metry since thesc axioms deal with events and vectors which form a linear space over
the field of rea/ numbers.
For a complex multilinear form f(x, y, z, ...) we put

fix, 3,z ) =3,y 2, )

Let us consider the complex Cartan-Whittaker bivector which is a complex bilinear
form:

£ = W0 — (') = ir??,
°% = [ +u"?] = ir’!,
0 = —2u%" = it'?

If « is a spinor of bivectorial density of the first kind then the results from Table 111 may
be summed up in the form

P = sign (AY) det (A3) AL AL ¥
i.e. the complex Cartan-Whittaker bivector is a complex density of the second kind. If
u is a spinor of bivectorial density of the third kind then the results from Table 111 give

Wy e NovT
Y =AY AT

i.e. the complex Cartan-Whittaker bivector is a complex tensor.
Conversely, from the axiom on complex muitilinear forms we can deduce transfor-
mation law for spinors, as given in Table 111
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Note added in proof

I am greatly indebted to Professor André Lichnerowicz and Professor Roger
Penrose for the discussion on the subject of this paper.

Professor Lichnerowicz pointed out that, in his opinion, my treatment of reflexions
of two-component spinors is equivalent to the classification of four-component spinors
given in his mimeographed lectures. Unfortunately, | have not been able to see
Professor Lichnerowicz’s work and, as vet, [ cannot make any comments on this
point. T would like to point out, however, that the axiom on complex linear forms
given at the end of this paper leads naturally to the idea that both time and space
reflexions in quantum mechanics should be antilinear operations, which is not equiv-
alent to the usual treatment of space reflexions.
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