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METHOD OF GENERATING STATIONARY
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We describe a method of generating stationary asymptotically flat solutions of the
Einstein-Maxwell equations starting from a stationary vacuum metric. As a simple example,
we derive the Kerr-Newman solution.

Recently a number of new stationary solutions was found [1-3] and new methods
of generating stationary Einstein-Maxwell fields were discovered [4-6]. In this note I
would like to describe another method of generating asymptotically flat solutions of
the Einstein-Maxwell equations starting from stationary vacuum metrics.

The general stationary metric can be written in the form

ds? = f(di+w;dx’)* —f " 'hydx'dx’, M

where i, j = 1, 2, 3 and the function £, w; and h;; do not depend on ¢. This notation closely
follows that of Kinnersley [6].
The electromagnetic field is very conveniently described by the complex electro-

magnetic tensor &,

F oy = Fuy+i*F,,, @

where F,, is the Maxwell tensor and *F,, is its dual. The source free Maxwell equations
could be written as

Fluvie) = 0, (3)
which assures the existence of the electromagnetic potential a, such that

F oy = Ayy— g, ©)

pv
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The coupled Einstein~Maxwell field equations may be written as equations in a 3-space
H with metric tensor h;;. Let V denote the covariant derivative in H. We define a twist
vector

T=fVXW+i(PVY - PVy*), %)

where ¥ is a complex function describing uniquely the electromagnetic field and * denotes
complex conjugation.
Using part of the Einstein equations,

G, = 8Ty, (6)
one can show that
Vxt =0, M
implying the existence of a real scalar potential y such that
T = Vy. (8)
Let us now define a complex scalar potential for gravitation
g = f—VY¥*+iy. 9)

Given h;;, ¢ completely determines the metric and hence the gravitational field.
The Maxwell equations (3) and the remaining Einstein equations may now be written
in terms of ¢ and ¥. They assume the form

fV%% = (Ve+2¥*VY)Ve, (10)
FVAY = (Ve+2W*V Y)WV Y, ()
The curvature tensor of H is also determined by ¢ and ¥ through the relation,

FIRY = Lo e+ We Wi, +V*e W 0 — (e +e¥)¥ W, (12)

I

The field equations in empty space where ¥ vanishes can be compactly written in
the form

(E*¢—DV?E = 2E*VE - V¢, (13)
where ¢ is a complex Ernst potential defined by the relation,
¢—1
] = f+iy. (14

Equation (13) possesses a number of invariant properties. Taking the complex
conjugate, we see that if £ is a solution of (13), so is £*. Ehlers [7] some time ago noticed
that one can replace £ by ¢"*¢ without altering the form of the equation. It is also in-
variant with respect to the following fractional transformation,

. (+BE+p*

Sl Sl 15
R TY: (1)
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where f is an arbitrary complex constant. When f# = —1 (15) reduces to the inversion
transformation & — &1,

We shall now show that the Ernst potential £ for the stationary vacuum spacetime
could be treated as a complex electromagnetic potential in some stationary electrovac
gravitational field. Let us assume that ¥ = (/¢ where ¢ is any solution of (13), « is
a positive constant and

f=x(*-1, x=uq (16)

a being a real constant. In this case 8 = — -+ /x = const. It is now apparent that Equation
(10) is trivially satisfied and Equation (11) reduces to Equation (13). Therefore (16) describes
a solution of coupled Einstein-Maxwell equations. In order to assure the asymptotic
flatness of the gravitational field, f should tend to 1 at spacial infinity, implying that

Eo J1+ 1/x asymptotically. Using the transformation (15), we can always satisfy this
condition.
The remaining metric coefficients one obtains from Equation (12), which now simpli-
fies to
FPRPY = 2k¥ W%, (17)

and Equation (5), which now reduces to
fAVXW = i(PVP*— Y*VY), (18)

Solutions of those equations provide us with w; and 74;;.
As an example, let us consider the Kerr metric, which is described by the complex
function & = px—igy, where x and y are oblate spheroidal coordinates and p?+g% = L.

Using the transformation (15) with f = k+ \/k(rc—i—l) we obtain
_ (+P) (px—igy)+p

- - ) (19)
1+ B+ pB(px—igy)
which satisfies the required boundary condition at x — co.
The metric we shall take in the form,
dx? dy*
ds* = f(dt+wdg)’ —f! [e” (-2—1 + 'yz) +(x* =1 (1- yz)dfpz:|, (20)
x — ——
where
;e p2x2+g2y2—1 an
[px+1+ﬁ-1]2+g2y2 *
Equation (17) leads to
02 = p2x2+g2y2—l, 22)
and from (18) we obtain
L=y 20 +B" Hpx+1+(1+ 571>
_ _ 800+ Ypx+ 14+ )] 23)

p(p*x*+g%y*—1)
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Introducing the spherical coordinates r and 6, which are related to x and y by

1+p7!
X = b (r—m), y =cosd, (24)
mp

and identifying g2 with (1 + f~')2a?/m*, where a is the Kerr parameter, we obtain the Kerr-
Newman solution with e = m?(1+28)/(1+ B)>.

This procedure, when applied simultaneously with Kinnersley’'s method, leads to
a new class of exact, stationary, asymptotically flat Einstein~-Maxwell solutions. It
also throws some light on the structure of the space of stationary Einstein—-Maxwell
solutions and indicates that there is a new relation between vacuum stationary solutions
and Einstein—-Maxwell solutions.

I would like to thank Professor Kip S. Thorne and all the members of the Caltech
relativity group for warm hospitality. I am also grateful to Dr. W. Kinnersley for helpful
discussions.

REFERENCES

[11 A. Tomimatsu, H. Sato, Phys. Rev. Lett. 29, 1344 (1972).

2] A. Tomimatsu, H. Sato, Kyoto University preprint RIFP 173/1973.

[31 W. Kinnersley, private communication.

[41 R. Geroch, J. Math. Phys. 12, 918 (1971).

[5] J. F. Ernst, Phys. Rev. 168, 1415 (1968).

[6] W. Kinnersley, J. Math. Phys. 14, 651 (1973).

{71 J. Ehlers, in Les Theories Relativistes de la Gravitation, CNRS Paris 1959.



