METHOD OF GENERATING STATIONARY EINSTEIN-MAXWELL FIELDS*

By M. Demiański**

California Institute of Technology, Pasadena, California

(Received March 26, 1976)

We describe a method of generating stationary asymptotically flat solutions of the Einstein-Maxwell equations starting from a stationary vacuum metric. As a simple example, we derive the Kerr-Newman solution.

Recently a number of new stationary solutions was found [1-3] and new methods of generating stationary Einstein-Maxwell fields were discovered [4-6]. In this note I would like to describe another method of generating asymptotically flat solutions of the Einstein-Maxwell equations starting from stationary vacuum metrics.

The general stationary metric can be written in the form

$$ds^{2} = f(d\iota + w_{i}dx^{j})^{2} - f^{-1}h_{ij}dx^{i}dx^{j},$$
(1)

where i, j = 1, 2, 3 and the function f, w_i and h_{ij} do not depend on t. This notation closely follows that of Kinnersley [6].

The electromagnetic field is very conveniently described by the complex electromagnetic tensor $\mathscr{F}_{\mu\nu}$

$$\mathscr{F}_{\mu\nu} = F_{\mu\nu} + i^* F_{\mu\nu},\tag{2}$$

where $F_{\mu\nu}$ is the Maxwell tensor and $^*F_{\mu\nu}$ is its dual. The source free Maxwell equations could be written as

$$\mathscr{F}_{[\mu\nu;\rho]} = 0, \tag{3}$$

which assures the existence of the electromagnetic potential a_{μ} such that

$$\mathscr{F}_{\mu\nu} = a_{\nu;\mu} - a_{\mu;\nu}.\tag{4}$$

^{*} Supported in part by the National Science Foundation [GP-36687X].

^{**} Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoża 69, 00-681 Warszawa, Poland.

The coupled Einstein-Maxwell field equations may be written as equations in a 3-space H with metric tensor h_{ij} . Let ∇ denote the covariant derivative in H. We define a twist vector

$$\bar{\tau} = f^2 \nabla \times \bar{w} + i(\Psi^* \nabla \Psi - \Psi \nabla \Psi^*), \tag{5}$$

where Ψ is a complex function describing uniquely the electromagnetic field and * denotes complex conjugation.

Using part of the Einstein equations,

$$G_{jo} = 8\pi T_{jo},\tag{6}$$

one can show that

$$\nabla \times \bar{\tau} = 0, \tag{7}$$

implying the existence of a real scalar potential χ such that

$$\bar{\tau} = \nabla \chi.$$
 (8)

Let us now define a complex scalar potential for gravitation

$$\varepsilon = \int -\Psi \Psi^* + i\chi. \tag{9}$$

Given h_{ij} , ε completely determines the metric and hence the gravitational field.

The Maxwell equations (3) and the remaining Einstein equations may now be written in terms of ε and Ψ . They assume the form

$$f\nabla^2\varepsilon = (\nabla\varepsilon + 2\Psi^*\nabla\Psi)\nabla\varepsilon,\tag{10}$$

$$f\nabla^2\Psi = (\nabla\varepsilon + 2\Psi^*\nabla\Psi)\nabla\Psi. \tag{11}$$

The curvature tensor of H is also determined by ε and Ψ through the relation,

$$f^{2}R_{kj}^{(3)} = \frac{1}{2} \varepsilon_{,(j}\varepsilon_{,k)}^{*} + \Psi \varepsilon_{,(j}\Psi_{,k)}^{*} + \Psi^{*}\varepsilon_{,(j}^{*}\Psi_{,k)}^{*} - (\varepsilon + \varepsilon^{*})\Psi_{,(j}\Psi_{,k)}^{*}. \tag{12}$$

The field equations in empty space where Ψ vanishes can be compactly written in the form

$$(\xi^*\xi - 1)\nabla^2\xi = 2\xi^*\nabla\xi \cdot \nabla\xi,\tag{13}$$

where ξ is a complex Ernst potential defined by the relation,

$$\frac{\xi - 1}{\xi + 1} = f + i\chi. \tag{14}$$

Equation (13) possesses a number of invariant properties. Taking the complex conjugate, we see that if ξ is a solution of (13), so is ξ^* . Ehlers [7] some time ago noticed that one can replace ξ by $e^{i\alpha}\xi$ without altering the form of the equation. It is also invariant with respect to the following fractional transformation,

$$\xi \to \frac{(1+\beta)\xi + \beta^*}{1+\beta^* + \beta\xi} \,, \tag{15}$$

where β is an arbitrary complex constant. When $\beta = -1$ (15) reduces to the inversion transformation $\xi \to \xi^{-1}$.

We shall now show that the Ernst potential ξ for the stationary vacuum spacetime could be treated as a complex electromagnetic potential in some stationary electrovac gravitational field. Let us assume that $\Psi = \sqrt{\kappa}\xi$ where ξ is any solution of (13), κ is a positive constant and

$$f = \kappa(\xi \xi^* - 1), \quad \chi = \alpha,$$
 (16)

 α being a real constant. In this case $\varepsilon = -\kappa + i\alpha = \text{const.}$ It is now apparent that Equation (10) is trivially satisfied and Equation (11) reduces to Equation (13). Therefore (16) describes a solution of coupled Einstein-Maxwell equations. In order to assure the asymptotic flatness of the gravitational field, f should tend to 1 at spacial infinity, implying that $\xi \to \sqrt{1+1/\kappa}$ asymptotically. Using the transformation (15), we can always satisfy this condition.

The remaining metric coefficients one obtains from Equation (12), which now simplifies to

$$f^2 R_{ik}^{(3)} = 2\kappa \Psi_{,(i} \Psi_{,k)}^*, \tag{17}$$

and Equation (5), which now reduces to

$$f^{2}\nabla \times \overline{w} = i(\Psi \nabla \Psi^{*} - \Psi^{*} \nabla \Psi). \tag{18}$$

Solutions of those equations provide us with w_i and h_{ij} .

As an example, let us consider the Kerr metric, which is described by the complex function $\xi = px - igy$, where x and y are oblate spheroidal coordinates and $p^2 + g^2 = 1$. Using the transformation (15) with $\beta = \kappa \pm \sqrt{\kappa(\kappa + 1)}$ we obtain

$$\xi = \frac{(1+\beta)(px-igy)+\beta}{1+\beta+\beta(px-igy)},\tag{19}$$

which satisfies the required boundary condition at $x \to \infty$.

The metric we shall take in the form,

$$ds^{2} = f(dt + wd\varphi)^{2} - f^{-1} \left[e^{2\gamma} \left(\frac{dx^{2}}{x^{2} - 1} + \frac{dy^{2}}{1 - y^{2}} \right) + (x^{2} - 1)(1 - y^{2})d\varphi^{2} \right], \tag{20}$$

where

$$f = \frac{p^2 x^2 + g^2 y^2 - 1}{[px + 1 + \beta^{-1}]^2 + g^2 y^2}.$$
 (21)

Equation (17) leads to

$$e^{2\gamma} = p^2 x^2 + g^2 y^2 - 1, (22)$$

and from (18) we obtain

$$w = -\frac{g(1-y^2)\left[2(1+\beta^{-1})px+1+(1+\beta^{-1})^2\right]}{p(p^2x^2+g^2y^2-1)}.$$
 (23)

Introducing the spherical coordinates r and θ , which are related to x and y by

$$x = \frac{1+\beta^{-1}}{mp}(r-m), \quad y = \cos\theta,$$
 (24)

and identifying g^2 with $(1+\beta^{-1})^2a^2/m^2$, where a is the Kerr parameter, we obtain the Kerr-Newman solution with $e^2 = m^2(1+2\beta)/(1+\beta)^2$.

This procedure, when applied simultaneously with Kinnersley's method, leads to a new class of exact, stationary, asymptotically flat Einstein-Maxwell solutions. It also throws some light on the structure of the space of stationary Einstein-Maxwell solutions and indicates that there is a new relation between vacuum stationary solutions and Einstein-Maxwell solutions.

I would like to thank Professor Kip S. Thorne and all the members of the Caltech relativity group for warm hospitality. I am also grateful to Dr. W. Kinnersley for helpful discussions.

REFERENCES

- [1] A. Tomimatsu, H. Sato, Phys. Rev. Lett. 29, 1344 (1972).
- [2] A. Tomimatsu, H. Sato, Kyoto University preprint RIFP 173/1973.
- [3] W. Kinnersley, private communication.
- [4] R. Geroch, J. Math. Phys. 12, 918 (1971).
- [5] J. F. Ernst, Phys. Rev. 168, 1415 (1968).
- [6] W. Kinnersley, J. Math. Phys. 14, 651 (1973).
- [7] J. Ehlers, in Les Theories Relativistes de la Gravitation, CNRS Paris 1959.