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It is proved that the discontinuity relation for the three-particle scattering amplitude
in the total energy variable can be analytically continued in the external subenergy variables
arround the two-particle normal threshold branch points corresponding to these variables.
Possible generalization to higher subsystem energies, i. e. towards higher number particle
normal threshold cuts in the subenergy variables is outlined.

1. Introduction

In attempting to utilize dispersion relations for the scattering amplitude of more
than two particles in initial and final states, one encounters the problem of how to determine
the discontinuity of the scattering amplitude across the kinematical cut in a form suitable
for dispersion-theoretical purposes.

If one is concerned only with the binary processes (i.e. for two particles in the initial
state going into two particles in the final state), the discontinuity of the scattering amplitude
across the kinematical cut is directly given by the two body unitarity relation. In that
case, the discontinuity is proportional to the imaginary part of the scattering amplitude
up to a certain phase space factor. In the case of the scattering of three or more particles,
however, the discontinuity determined by the unitarity is still proportional to the imaginary
part of the scattering amplitude; nevertheless, the unitarity equation does not determine
the discontinuity relation suitable for dispersion relation integrals. The reason for this
difficulty is that unitarity gives the total discontinuity, i.e. the discontinuity in all indepen-
dent variables of the scattering amplitude simultaneously, while in order to state dispersion
relations the discontinuity of the scattering amplitude in just one variable will be required.
Such discontinuity, however, can be derived from the unitarity relation using the connected-
ness structure of the scattering amplitude and the discontinuity relations of the scattering
amplitude in subenergy variables [1, 2]. The aim of the present paper is to prove that just
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one variable discontinuity relation for the three-particle scattering amplitude can be
analytically continued in subenergy variables. Such continuation is of special importance
in the Isobar Model where one wants to continue on the second Riemann sheet to the
pole position corresponding to the isobar formation [3].

[n the following section it is briefly shown how the required discontinuity relation
can be found. The problem of analytical continuation in subenergy variables is solved
in Section 3. The last section is devoted to discussion and to conclusions.

In this paper, rather than adopting the “bubble” notation for the amplitudes, we
write all equations in analytical form in order to show explicitly that each step of the
argument is mathematically justified.

Leaving aside the whole complexity of the 3-body problem we shall restrict ourselves
to only 3 to 3 particle amplitude where the 3 particle states are formed of free particles.

2. The continuation of the discontinuity equation

The only process allowed for physical energies below production threshold is elastic
scattering. The discontinuity relation across the three-particle cut in total energy variable
has the following form:

T(s,, 0 ,0%, .)=TG_,0,0%,.)=2iY T(s,.a", 0%, . )T, 6 ,6%,..). (D

Conventional notation is used here: T is the connected 3 to 3 particles amplitude!; s is
the total energy squared in the three-body centre of mass system; ¢ are two particle sub-
energy variables taken jointly: labels +, — identify the position of the particular variable
above or below the corresponding cut; superscript i (f) stands for the initial (final) con-
figuration; and the summation symbol stands for three-particle phase-space .integrals.
The dots stand for other variables which we shall mention explicitly only when necessary.
This equation has been derived by several authors {1, 6] and, as it was pointed out in [5],
the right hand side can be written in four different forms arising from the possibility of
interchanging the total energy or internal subenergy variable boundary values denoted by
primes; however, external subenergy variables ¢*. and o', boundary values are not changed.

One can ask what happens with Eq. (1) if we change, e.g. 6% subenergy variable which
is the squared total energy of the particles 2 and 3 in their centre-of-mass system from o} _
to o' ,. If one wished to continue analytically the discontinuity Eq. (1) in the external
subenergy variables o}, however, it is by no means clear that the discontinuity equation
would not change. For instance, by adding the following term

2i Y T(s4. 0%, 0%, .. )T (e} _, ),

! T is defined by means of the S-matrix as follows:

3 3
833 = 833-+i(2m*6* (z Pg.‘z 72 Tas.
; A=1

A=1

As we are using symbol T only for the 3 to 3 particle amplitude we are omitting the subscripts on T.



573

where 77 is the amplitude for the process where the first particle does not interact with
the rest of the system, and subtracting the term

2i Z T(s_.a', %, ...)TD(a'il_, L)
and using the unitarity conditions in ¢ subenergy variable
T(s, 64 4,0, .)=T(s,a}_,a",..) =2} T(s, 0}, 0", ..)T (6}, ...) )
one arrives al the discontinuity relation
T(s4, 05,65, .)=TG., 04,06 ,,..)

= ZiZT(S-F’ O’ilré—s Gi;iw ~~~)T(S~’ Gi!—a O'f]'—’ "-)
+2i Y T(s,, 08,054, . )T(6h_, .)+2i Y T(s_, oty 044, . )T (6i -, ..), (3)

which is the discontinuity of the three-particle amplitude, while both ¢} and ¢} are con-
tinued above the appropriate two particle subenergy variable cuts. Compared with Eq. (1),
the right-hand side of the discontinuity relation has developed two additional terms in-
volving an integration over the disconnected amplitudes, i.e. over the two-body phase
space.

The purpose of this paper is to show that the last equation can actually be written
in the same form as the discontinuity relation Eq. (1), with only the subenergy variable
o' analytically continued from the boundary value ¢’ _ to the value o} ,. In other words,
it sets out to show that the discontinuity Eq. (1) can be analytically continued in the sub-
energy variables ¢} and ¢ without changing its relatively simple usual form.
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Fig. 1. Schematic representation of the last term of Eg. (3)

Before proceeding any further let us gain some insight into the nature of Eq. (3)
by analysis of the last term on the right-hand side. Using the notation of Fig. 1 and sub-
stituting for the 7° amplitude

TP = 2p3(2n)*8°(p} — p1)t(oy, 9),

where p$ and p, are components of the four-momentum of the first particle and #(a;, &)
is the two-particle scattering amplitude for the scattering of particles 2 and 3, that term
can be written as follows:

. H r -~ ~ ~ A, H -~ ~
Y T(sy, 014,074, n N, ne, Ng, L)T6_,n - ny)

~ &p &p, ass )
- %f @ny20° (200278 (2n )32p3( myo (Z P Z
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~ A~ A -~

2P?(2n)353(51 _};il)l(ail—’ "; : ;Ii)T(S+’ ail-s‘—a OJl-&—’ n, ")V’ Ng, Nf’ MRV

1 k(e § . - A
3277 ; l)j T(s)45 01+, O'f“_, n, .. )Hoy -, 0 n)dn. “4)

Here n is a unit vector in the direction of the second particle momentum in a centre-
-of-mass frame of the 2-3 pair, & is the magnitude of the momentum of the second particle
in the same reference system, N is a unit vector in the direction of p, in the over-all centre-
-of-mass system. Because of the J function dependence of T® amplitude the three body
phase space integral is reduced to a two body one. This simplification allows us to write
the discontinuity relation (Eq. (3)) in the following form:

. A
disc T(s, 64, 04, 1y, Ny, .02)

= 9(a§)j [disc T(s, 61 4, oL, n, )6 _, i n)dn+g(s, a§_+, o nnne ) (5)

where

oy = 2 KD

o(0y) = ———5 ==
U sen)? o

is the usual two-body phase space factor multiplied by 2i for convenience, and

(6)

A
2(s, 034, Gy 4, By, g, ..L)
) v A .
=2iY T(s4, 044,004, 00 . )T(s2, 0y, 0%, ny, .20, ¢)

Thus for the discontinuity T(s, ¢} ., &% ;, ...) we have an inhomogeneous integral equation
of Fredholm type. The kernel of the integral equation is the two particle amplitude ¢~
This is an important feature of the integral equation (5) owing to which the solution in
a closed form can easily be found by employing the unitarity condition for the two-particle
amplitude ¢~ (~ = Ho,., ).

From the theory of Fredholm integral equations [7] it follows that if there exists
a reciprocal kernel (n;, ny) satisfying the following integral relation

£ (A, i) +(n;, 1) = o f t7(ny, n)r(n, ngdn (8)
then there exists an integral equation which is reciprocal to Eq. (5), i.e. the equation
g(ny, ne, ...) = o(a}) { g(n, Ag, .. ye(n, n)dn+disc T(ny, A, ... )

After comparing Eq. (8) with the unitarity condition for the two particle amplitude
15 (i n)—1(ny, n) = o f £ (n;, ¥ (n, nedn (10)
one can see that in this case the reciprocal kernel actually does exist and is equal to the
two particle amplitude taken above the two particle kinematical cut in the complex o,

plane i.e. (n;, n;) = —1(ch,, n;, ny). If we substitute for g(s, o} 4, 6%+, ...) (Eq. (7)) we
now obtain from Eq. (9):

. A . A
disc T(s, 614, 014, Ry Agy . = 203, T(s4, 014, Oy 4, Ny -.)

x[T(s-, 0\, 0%, ny, .)+o | T(s-, 0, 0% _, n, .0t (n - n)dn]. (11
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The integral expression in brackets on the right-hand side is in fact the discontinuity of
T in the subenergy variable o' (Eq. (2)). After substituting for the two particle phase space
integral in Eq. (11) from Eq. (2), some terms canccl out and finally we are left with the
following discontinuity rclation

disc T(s, 64, 0% 4, ...) = 2i Y. T(s4, 044, 0%, . )T(s_, 0 _, 0% _,..). (12)

This is the same form of the discontinuity relation as that of Eq. (1), the only difference
being that here o' is above the corresponding two particle cut in the complex o} plane.
This equation has been rather intuitiveiy stated in [5], while here we have presented an
exact analytical proof of its validity and a justification for a simple analytical continuation
of Eq. (1) into Eq. (12).

3. Conclusion

The fact that the form of the discontinuity relation across the three-particle cut in
the variable s for the connected amplitude T with ¢’ ;. and o', is the same as the one with
ol _, o\, shows that the discontinuity relation Eq. (1) can easily be analytically continued
in the variable o'. By analogy, the same can be proved to be true for the variable ¢'. Such
continuation is particularly useful in the isobar formulation where both ¢} and &' are
continued below the appropriate subenergy variable cuts to the point corresponding to
two-body resonance energy [3], [8]. The original three-particle scattering amplitude is
then reduced to an effective two-particle amplitude describing particle-resonance scattering,
to which the conventional two-body dispersion relation technique can be applied [9].

The same argument which we have applied to o, variables can also be applied to
the discontinuity relation of the connected amplitude 7 in the subenergy variables o,
and o in initial and final states. Hence it follows that Eq. (1) can be arbitrarily continued
in each of the variables ¢! and ¢5(4 = 1, 2, 3) around the two-particle cuts. Eq. (1),
then, can be written as follows:

T(s., a5, 05, ... )~ T(s-, 04, 0%, ...) = 2i Y T(sy, 04, 0% .. )T(s-, 04, 05, ...)  (13)

where in all terms any subenergy variable o) and ¢, must be simultaneously, but otherwise
arbitrarily, placed above or below the two-particle cuts.

As we have mentioned earlier, the right hand side of Eq. (12) can also be written in
four different ways, arising from the possibility of interchanging energy or internal sub-
energy boundary values independently.

Up to this point our proof has applied only to the two particle threshold cuts in the o
variables. However, the proof can be generalized and it is possible to show that the result
is valid also for higher particle threshold cuts in the ¢ variables. The unitarity condition
in subenergy variables, Eq. (2), will then be generalized to include higher intermediate
states, and the last two-terms of Eq. (3) will then contain a sum of terms where the inte-
gration will not be only over the two-particle phase space but also over three and higher
number particle phase space. The proof would proceed in exactly the same way as in
the present case.



576

REFERENCES

{11 3. S. Ball, W. R. Frazer, M. Nauenberg, Phys. Rev. 128, 478 (1962).

[2] D. Zwanziger, Phys. Rev. 131, 888 (1963).

(3] I. J. R. Alitchison, D. Krupa, Nucl. Phys. A182, 449 (1972).

[41 A. O. Barut, The Theory of the Scattering Matrix, The Macmillan-Comp., New York 1967, p. 84.

[51 R.J. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, The Analytic $-Matrix, Cambridge
University Press, 1966, p. 234.

[61 L. F. Cook, B. W. Lee, Phys. Rev. 127, 283 (1962); 127, 297 (1962).

[7]1 Ch. H. Page, Physical Mathematics, D. Van Nostrand Company, Princeton 1955, p. 163.

(8] M. Kac, Oxford preprint, Ref. 66/72 (1972).

{91 S. Mandelstam, J. E. Paton, R. F. Peierls, A. Q. Sarker, Ann. Phys. 18, 198 (1962).



