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The independent cluster emission model is unitarized by means of the Lippman-Schwin-
ger equation. We study two possible generalizations of this model to processes involving
the absorption of clusters. The first one (a) is of the type discussed by Auerbach, Aviv, Sugar
and Blankenbecler, the second (b) is based on the generalization of Bialas and Czyz. In
case (a) we show that the introduction of energy and longitudinal momentum conservation
does not change the general conclusions of the AASB paper — the leading singularity lies
at J = 1 —A4/2, 1 being the rapidity density of clusters produced by the input potential. In
case (b) we show that diffractive production exists and is a direct consequence of energy and
longitudinal momentum conservation.

1. Introduction

It is well known that the independent cluster emission model (ICEM) describes the
general properties of nondiffractive multiparticle production processes. However, it does
not take inelastic diffraction into account. The inelastic diffraction is believed to be a shadow
effect, due to the absorption of incident and outgoing hadron waves (Good and Walker,
1960) which can be calculated by a unitarization procedure. One is tempted to find out
if ICEM is able to describe this type of hadronic processes when properly unitarized.
Such an attempt has been made by Bialas and Kotanski (1973) who have calculated only
the first unitarity correction and neglected all higher order terms (that is, shadow of shadow
and so on...). They found that the diffractive production amplitude appears and its energy
dependence is similar to that of elastic scattering. However, in view of the large coupling
constant, it is natural to expect that many higher order corrections are important and can
affect the s-dependence of amplitudes. We are thus facing the problem of exact unitariza-
tion of ICEM. So far, known examples of unitarized ICEM do not guarantee energy and
momentum conservation (see Bialas, Jurkiewicz, Zalewski 1976).
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In this paper we consider two generalizations of the ITCEM which after unitarizing
explicitly take into account energy and longitudinal momentum conservation. The first
one is of the type which was discussed first by Auerbach, Aviv, Sugar and Blankenbecler
(1972) (AASB). Our conclusion is that the elastic scattering amplitude has a leading singu-
larity at J = 1-—4/2. This is identical to the AASB result. The second generalization was
proposed by Biatas and Czyz (1974). We have found that the elastic scattering amplitude
has in this case a leading singularity at J = 1. Inelastic diffractive scattering is caused
by energy and longitudinal momentum conscrvation in a way analogous to that found by
Biatas and Kotanski. After switching off the energy and longitudinal momentum conserva-
tion, inelastic diffraction vanishes. Our treatment is based on the Lippman-Schwinger
equation which after a suitable choice of the imaginary part of the propagator automat-
ically guarantees the unitarity of the whole S-matrix.

Basic definitions, normalization and potentials are given in Section 2. In Section 3
we study the solution of the Lippman-Schwinger equation for the AASB-type potential.
The energy dependence of amplitudes for a BC-type potential is analysed in Section 4.
Section 5 contains our conclusions.

2. The Lippman-Schwinger equation and the potentials

Let ¥ be a Hermitian interaction potential to be specified later and M — the transi-
tion matrix. We write the Lippman-Schwinger equation in the operator form

M = V+VLM, (1)

where L is the propagator of an intermediate many particle state.
De Groot and Ruijgrok (1975) have shown that the unitarity demands L to fulfill the
condition

Im L = } 6%(P - Py,), 2
where P;, is the initial four-momentum and P is the operator of the four-momentum

of the intermediate state. We now require L to satisfy a dispersion relation which can
be written in the form

L = [ dqfi)s*(P—nPy). 3)

O e, §

In the work of de Groot and Ruijgrok f(#) was assumed in such a form which corresponds
to the conservation of total three-momentum in the total ¢. m.s. In our treatment the
exact form of f(x) is left unspecified as we shall never need it. The linearity of the Lippman-
-Schwinger equation (1) is its great advantage when compared to the nonlinear unitarity
relation.,

The standard form of the operator creating the coherent state in the ICEM is

S, = exp (i [ dko(K)a* (k). @
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Here dk denotes d3k/k, and the commutation relations of the annihilation and creation
operators are

[a(k), a* (k)] = koo (k~K"). (5)

The possible dependence of S, on spin, isospin and other quantum numbers is ignored
here as we are merely interested in the effects of imposing the energy and momentum
conservation. We have to choose now the generalized form for the operator creating the
coherent state. The possibility of cluster annihilation should also be incorporated. As V
should be Hermitian we take

V = [ dp,dpsdp.dp,V(pes Po; Pes P bg b bW, (6)

where b, bt are annihilation and creation operators of nucleons with commutation rela-
tions [b(K), b+(K)] = ko6*(k —K'), [a(k), b(K")] = [a(k), b*(k")] = 0. The hermiticity of ¥
requires ¥ to fulfill the condition

Y(Pas Pvs Pe> P) = ¥*(Pes Pas P> Pb)-

Further, W is an operator which describes cluster production. Because of the factorizable
form of Eq. (6) at this stage there are no correlations between nucleons and clusters.
The AASB-type choice of ¥ and W is

¥Y=G \/EaEbEcEd S_ﬁ()(l’au)g(“ Pb”)g(Pc”)@(—Pa||)W((Pai —PCL)Z)W((_PM _pdl)z)ﬂ (7a)
W = exp [i | dko(k)a* (k)] exp [ —i [ #ko*(K)a(k)] = Wyass:

The function w(pi) is normalized by jdzplw(pi) =.l. We see that the Born term of
nucleon-nucleon elastic scattering behaves like s'~%.

For the BC-type potential we have

¥Y=G \/EaEbEcEd 9(pa||)0(pc||)0( _Pb”)O(— Pd||)W((PaL - PcJ_)Z)W((Pbi - Pai)z),
VV = Sc+Sc+ = WBC: (7b)
S, = exp (i | dko(k)a*(k)+i | dko*(k)a(k)).

We assume that g(l—(') depends only on k. The Born term for the BC-potential behaves
now like s' 2 where A is given by Eq. (14). As it will turn out, despite the highly compli-
cated mathematical form for the full amplitude, it is still possible to analyse its energy
dependence. We limit ourselves to the case without transverse momentum conservation.
Thus we may neglect the additional dependence of ¥ on the transverse momenta of the
nucleons by assuming that G is an effective coupling constant. We also choose the ¢. m. s.
(P;n = [Py, 0, 0,0]). In order to analyse the full transition matrix M we will investigate
the formal solution of the Lippman-Schwinger equation given by the perturbation series

M=V i (LV) . 3
n=0
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We follow rather closely the treatment of Biatas and Kotariski and write the propagator L
in the form

w© e+ix

~ 1 - Il

L= J dn f(n) (2n0)? J d*y exp (ﬂ?’inf‘—)'?J 5”»’/?0*(./:’)a(;)—)"’j(fpﬁw('ﬁ)b(ﬁ), ®

0 —iw

where k = (ko, ks, ¥ = o, yy)-
Then the LV operator has the form

) . 1 i /“ ~ _ _ _ Il ~ . .
LV = Jd'lf(n)m—s—z J dz,vexp<any—y Jdppb+(p)b(p)>
1] ) e—io

x| dpodpsdp.dp,¥(Pas Po3 Per P)bS b3 b,bLD(F),
where
D(y) = exp (=7 | dkka*(Fya(kpWw. (1)

The Eqgs (8), (10) and (11) are our basic formulae used in further calculations.

3. The full amplitude for the AASB-type potential
In this section we examine the AASB potential (7a). Let us define the coherent state
(U} eon = exp (i | dkh(R)a™ (£)) 10). (12)

Here [0) denotes the state of cluster vacuum. It is straight-forward procedure to show
that

"

WiassD1D5 ... D,i0) = 'I;Il F(y) T[j: F(F;+Piv1) - lelk F(y;+ ... +7) ... F(i i)
x {o() (1+(1+(1+ .. (1+e7m)e ™ m=r) e oy . (13)
Here
D= DG, F() = exp (J dkio(k,)%e™).
In deriving formula (13) we have used the relation
exp (— 7 | dkka*(Ryaih)) exp (i | dko(R)a* (k)
= exp (i | dko(k)e " a* (k) exp (— 7 | dkka™ (k)a(k).

In the work of de Groot it is shown that in the high energy limit it is sufficient to know
the explicit form of F(j) only for small values of y - § which is

-24 B
FG). ~ (ﬁ) W5 (14)

¥yry~0\ 2
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N ,
where 71n = = Jd2k‘,<|g(kl)|21n~e Y 'ui_'“,, y = Euler constant, 4= {d%k |o(k )%,

7

i = mass of the produced cluster.
Projecting the coherent state from Eq. (13) onto the state of cluster vacuum, then integrating
over the momenta of the leading nucleons and over the total energies of the intermediate
states; after some rearrangements one obtains

(Papal KOV(LYY'I0Y (PyPa> = G™* ' VEE,E4E, s™#m* 1)

m m m

1 'y r ’ rr r —
X (271)3,, j H dni f(n;) J‘ H dx;0(x;)dx; 0(x;") J H dz)’i
f i 1
m m m—1 _ _ %}—),
- _ Vi Vit Vit 1
ST e e
1 Js Js NE

where E,, E,(Es, E4); Py, p2(Ps, pa) are the energies and momenta of the initial and final

i
NG
Com Py, P
X (Pyn—pi—pi) x; = 5 X = - ;/s From the explicit form of F(¥) we can find the
A’
energy dependence of the n-th term in the elastic scattering amplitude and after summing
over n we get

nucleons, p;, pi’ are the momenta of nucleons in the i-th intermediate state and y; =

4 (m+1)
3 m(m

. S - el S 2V
<.I'73;74\ {(0[M|0} 1—I;1P2> =G \/E1E2E3E4 s7F Z (2Gs™%y" <T; <f> ) T.(A),
n=0

(16)

where T,(1) does not depend on s and is given by

T, = § TT dnfndbm. (D)0n_ (0D,

1

(=

1/2 m g+ico m nm

0. ({m}) = Q 1) J H dx; j H dy;, exp (Z yimi(l—2x£)>

e—iw 1 i=

x l—ly,+ H Vi, +Vie1s)” (Z vi)h
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Here 6,,_({n:}) is obtained from 6,,, ({m;}) by xi = xi', y;, = Vi_, »i, = . We thus

Yot yy
2

see that the perturbation series (8) is divergent and behaves like s' ~# Y cps? i (? _‘3).

m|0
If we take the contribution from m = 0, 1 we recover for f§ = /2 t}lle result obtained by
Biatas and Kotanski, i. e. the elastic scattering amplitude is proportional to s. However,
m = 0, 1 terms are only the first two terms in a very complicated sum of all checkerboard
graphs, whose presence is required by unitarity. The series (16) obviously violates Froissart
bound. The mechanism by which Froissart bound is enforced is identical to the one found
by Auerbach, Aviv, Sugar and Blankenbecler. A generalization of the AASB result was
given by Schwimmer and Veneziano. They showed that any model in which amplitude
can be written in the form (16) has a cut in J-plane whose position is fixed by the posi-
tive solution of the quadratic equation

imz+m 4 +1-p=1J (17)
2 2 v
) 1 A A 2 )
that is mg, = " B— > + 3 +p) +2A(J—1) }. The only poles on the physical sheet

1 A
are those for which m < I(B - 3) . For ICEM we have 4 = 2f and the leading singularity

is J = 1—A/2. This singularity is present only if one takes into account the exchange of
an infinite rumber of chains. Comparing our result with that of Blankenbecler we see
that the introduction of energy and longitudinal momentum conservation did not change
the s-behaviour of the eiastic amplitude. For f = 4/2 we find that

o _4
<{P3p4l <qIMI0> |pipy> = io(q ) VEE;E;E, s 2
im2 m

DGR s

m= Bn=

where T, (4, x) for x = ﬂl: >0 is
v

T n(4, X} = f H d”!f('?i)om*({ﬂi}v)om-,n({ni}’ x)

1

m n({n} ) H dx:, J‘ H dyx €Xp <Z yi-”i(l_zxe(n_—i)-zxél )
@n l)

m m=—1 m
X n yit H Fi_+Yier ) "o (_; i) h
1 1

(=
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From (18) we sce once again that the leading singularity lies at J = 1 —4/2 also for particle
production processes. This result can be generalized to many particle production ampli-
tudes. We conclude that for the AASB-type choice of the potential the energy dependence
of the inelastic exclusive channel amplitudes is similar to that of elastic scattering both
being unfortunately wrong.

4. The BC-type choice of the potential

The second possible generalization of ICEM is the BC-type choice of the potential
(7b). Hence from now on W = Wy, and

D(7)) = D(7)) = D; = exp (=, | dkka*(k)a(k))
x Y (igff dko(yat(k)+ | dko*(K)a(k)]). (19)

g=11

After some algebra we obtain
. L n+1
WecD, ... DD 10> = exp(—- -2——»-[&“9(1(;);2)

X z F—claz(y_l)F—uu(yz) F"Enfn#](i")F_flsg(y‘ +y2)

£1,-stne 1= kL

XF—ezch—’z'{"?s) F—c,._;s,,u(j;n—l+)76>)F—z184(}—’1+5)-2+y3) F—c,.a,”.;(z )7:)
1

X [{0K) (&4 1 +E,6 7 g, e Ontin0bp g e @Y, L (20)
Here
F(5) = exp (x | dklotk )i2e™) = [F(H]"

As only small vy values contribute in the high energy limit, we replace F(y) by Eq. (14)
and after scaling the variables we have

i 3 .- - ;i 3 -y f_:\ T = —-,.i: "‘lrl.'l
(Pspsl COMIOY Pip2> = GV VEEEE, Y ¥ 5 207 "yled), @D

where 7,({¢;}) does not depend on s and is

n{e}) = [Gm**?]" § U dn,f(my) { dxidx;0(x})0(x;")

n n n

x—l'f o0 ( S 52 ) o GOF aG2) o F 2
(271’1')2”‘ l i l i \/g —z1e2\) 1 —e383 Ya) ... —e&18n+1 if-

1
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Thus we observe that the leading singularity is a pole at J = 1. The terms which contribute
to this pole fulfill 3 z; = 0. This is the case when from the whole product [] (S, +S) we
consider only the contribution from diagrams involving an equal number of S, and S
operators. The first nonleading singularity lies at J = 1—1/2 and is obtained from all
these terms [ [ S]] S.” where one and only one operator S, (or S.') is not cancelled by S,
(or S.). It is also possible to find one particle production amplitude

<P3pal <MY PPy = inlq ) VE ELEE4 G(m?)?

i "4":("+1£;)2~ .
x ¥ ¥ 5T 0, (22)
n=0 {&,=11)
where y,({¢;}) does not depend on s and can be obtained from y,({¢;}) by multiplying the
integrand in y,({g;}) by

- 4

- - " n_ 3
A =¢ + Y= 4e —(y..+yn-1)-q:+ S e—(z:,v.')i~ ‘23
n = Ep41 1T E,€ Vs n-1€ Vs 1 1 Vg L )

In the high energy limit the whole amplitude behaves like s and this behaviour comes
from the terms fulfilling the condition Y = 0. We would like to emphasize that this
behaviour of one particle production amplitude is implied by energy and longitudinal
momentum conservation. Indeed, negligence of energy and momentum conservation is
equivalent to putting g equal zero. Then 4, = Y'e; = 0 and the term proportional to s
vanishes. Thus in such a case there are no diffractively produced particles: The next
singularity is at J = 1—4/2. One can also generalize this result to the production of a gre-
ater number of particles.

The fact that energy and longitudinal momentum conservation force the diffractive
production of fast clusters was first discovered by Bialas and Ketandski. They used how-
ever the technique of the overlap matrix which does not guarantee the unitarity of the
whole S-matrix and, furthermore, solved the problem only in the first approximation. In
our approach both diffractive and nondiffractive amplitudes are calculated from the
known Born terms and the exact unitarity of the whole S-matrix is assured.

5. Summary and conclusions

We have studied the influence of energy and longitudinal momentum conservation
on two different versions of the unitarized independent cluster emission model. Our
results could be summarized as follows:

(i) Energy and longitudinal momentum conservation incorporated into the Auer-
bach, Aviv, Sugar and Blankenbecler model of multiparticle production processes does
not change the AASB result.

(it) In the Bialas-Czyz-Kotanski model energy and longitudinal momentum conserva-
tion implies the existence of inelastic dififractive scattering. Thus we extend the results of
Biatas and Kotanski to all orders in the coupling constant. In particular, we have shown
that
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— if there were no energy and momentum conservation, inelastic diffraction would vanish,
— the diffractively produced particles are fast.

(iii) The advantage of our approach as compared to the overlap matrix technique
is that it quarantees the exact unitarity of the whole S-matrix. We see that the BC-type
potential 1s able to describe qualitatively the s-dependence of amplitudes as opposed to
the AASB-type one.

The author wants to thank A. Biatas, E. H. de Groot and J. Karczmarczuk for helpful
discussions.
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