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Nuclear inertial mass parameters corresponding to quadrupole and hexadecapole de-
formation are investigated. Two different approach are applied, both making use of the
adiabatic approximation for the collective motion. The results are presented for 24°Pu,

1. Introduction

Inertial mass parameters play an important role in describing the dynamics of the
nuclear collective motions, namely fission and vibrations. In this paper the inertial mass
parameters corresponding to multipole-multipole vibrations and those connected with
fission mode are calculated. Both types of inertial mass parameters can be calculated in
adiabatic approximation [1]. The inertial mass parameters for multipole-multipole inter-
action can also be obtained by harmonic approximation [2]. The formulae for the harmonic
approximation in the limit of low frequency are the same as for the adiabatic one [3].
It is still possible to obtain the inertial mass parameters of a fissioning nucleus from the
vibrational approximation, because each change of deformation can be described by the
changes of multipole moments [3]. The aim of this papcr is to check if there are any differ-
ences between the inertial mass parameters corresponding to fission mode calcu'ated by
adiabatic approximation when deformation parameters are treated as collective variables
and those ‘“‘extracted” from the vibrational ones.

An attempt to show that a mean square radius is significant dynamical variable is
made. This variable should be taken into account especially for large quadrupole deforma-
tions corresponding to the second minimum and to the second saddle. It seems that such
a variable as well as the quadrupole moment may play a significant role as the second
collective variable in the description of the excited vibrational states in the second minimum
of the potential energy.
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2. Description of the calculation
2.1. Formulae

The inertial mass parameter is calculated in the adiabatic approximation. The general
formula for this parameter corresponding to the collective coordinates g; and g; is given

by [1]
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&, and &, are the energies of the excited m ) and the ground ;0) states, respectively.
After inclusion of the pairing interaction by the quasiparticle formalism and taking
into account the coupling with pairing vibrations, formula (1) takes the form [I, 4]
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H is the single-particle Hamiltonian, v, and v, (x? = 1—2¢?) are the variational parameters
of the BCS wave function corresponding to the single-particie state |v) with the energy e,,

and E, is the quasiparticle energy of this state F, = N, (e,~A)*+42. The quantities A
and 4 are the usual pairing parameters, i. ¢. the chemical potential and the energy gap,

) 04*
respectively. The derivatives —§~ and -— can be obtained from the following formulae
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The terms in the second line of Eq. (2) describe the coupling with pairing vibrations.
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One can get formula (2) only in the case when the single-particle Hamiltonian de-
pends explicitly on ¢; coordinates.

Now, let us assume that this is not the case. The Hamiltonian depends on another
set of parameters o; and then the inertial parameter B,, is given by

d l .0
0] —— {m)> {m| ;,)“ [0>
0y

Bq s - ) iio-k ?o-l 2 h2 6ak (5)
- Z Z oq; 04; Z En—8&o
K I )

m>

after a simple change of variables in the derivation. The last formula can be written in the
following form
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Expression (5) is equivalent to formula (1) only when the parameters o; can describe the
same type of vibration as that described by the set of the collective coordinates g;. This
happens when the set of the parametrs o; is sufficiently large.

... 0oy . . .
The derivative 5—' can be calculated in a microscopical way. Let us assume that the

q;
coordinate ¢; is equal to the mean value of the operator Q;
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In this case the derivative a—q is given by [1]
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The sum in the second line of the last equation is due to the coupling with pairing vibra-
tions. If the number of parameters g; is equal to the number of the parameters o¢; then

- . . .. Oo;
it is possible to get the derivatives ——

appearing in Eq. (5) in the standard way from

J

aq;
the set of the derivatives o4 calculated according to formula (8).

oj

All the calculations in the present paper are made with the use of the Nilsson poten-
tial {5, 6]
Ve, £4) = 4 hagle, £4)e’[1 —% eP,(cos 3,)+2¢,P,(cos 9,)]

—héoor[2l, s+ p(I2 = 7)1 ©
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One takes here as the dynamical variables ¢; the quadrupole ¢ and hexadecapole &, de-
formations and gets B,,, B,,, and B, ,, according to Eq. (2). The derivatives of the Nilsson
Hamiltonian Hy with respect to the deformation parameters are equal to [7]
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a=(1-%2¢e){+% ).

The calculations can also be performed with another set of collective parameters
Qoo 020 and Q4o which correspond to the mean values of the following operators

Qoo = '"2, on = 2r2P2(Cos 3), Q40 = £’2P4(C05 3,), (1)

where r and 3 are the spherical coordinates, ¢ and 3, are the spherical coordinates defined
in the stretched coordinates [5] &, , {. To calculate the inertial mass parameter By ,00,0
the term with the operators (11) is added to the Nilsson Hamiltonian Hy, i. e.

4
N . On A ‘
H = Hy— Z (61—03)00- (12)
A=0,2
Obviously the new Hamiltonian H is equal to Hy when all the parameters o, are equal
to 09. The parameters 65 are the mean values of multipole fields obtained from a line-
arization of two-body multipole-multipole interactions. These mean values (67) correspond
to the given deformations &, &,.
One can calculate now the derivative of the Hamiltonian H with respect to o,
oH N
—— = —Qj0- (13)
do,

According to Eq. (2) the inertial mass parameter B,,,; is given by

B = 2h? <VQQ,,o’Zw> <w‘Qlo">
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v,

2
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+terms which describe the coupling with pairing vibrations. (14)
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According to (8) the derivative is
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+terms which describe the coupling with pairing vibrations. (15)
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Thus one gets

It is interesting to note that formulae (14)—(16) are identical with those obtained by the
harmonic approximation in the limit of small frequency w (cf. Ref. [3]). The notation
used here is slightly different from that in Ref. [3], namely,

1 ; 0050

— B,., =2X% and 2 =25 17

p2 T oAn } do, ! (7
The calculations are made for protons and neutrons separately. Inertial mass parameter
B,,, is given by Eq. (2) and becomes the sum

B,., = B}, + B, (18)

where Bfi(e'? denotes inertial mass parameter for protons (neutrons). The situation becomes
more complicated when one takes the parameter By, o , connected with the collective
coordinates Q;, and @,, which are the sums of proton and neutron parts

Q0 = Q%0+ Q- (19)

The derivative

, which appears in formula (1), is equal to

0 0 13,
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One obtains this expression by introducing the difference (Q,— Q%) as a second col-
lective variable. 1t can be seen from Eqs (6) and (20) that

A0

BQAOQuO =% (Bgonuo + Baonuo)‘ (21)

The inertial mass parameter B, can be obtained from the set of the parameters By, 0,
with the help of the following relation [3]

5 2 / 0080 Q%0 oo Q%0 9Q%o
Bxiaj = <BBAOQMOE = +BQ}.0Q,‘0 as- = . (22)

68j 08]-

u,A
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The tilde over Bm , distinguishes it from the B, obtained with the use of formulae (2)

p(n)
A0

and (18). The derivative can be calculated in a microscopic way from Eq. (8)

&;
only if g; is identical with &; or in a macroscopic way, for a given distribution of the
density inside a nucleus, if it is assumed that the shape of the nuclear surface is identical
with the equipotential surface for the potential (9). One of the aims of this paper is to
show that B,, of Eqs (2) and (18) are identical with E‘mj of Eq. (22) if a sufficient
number of multipole vibrations generated by multipole moments Q,, are taken into account

0
and it the calculation is completely microscopic (i. e. with «aQ—Ml calculated microscopi-
&

cally) .

2.2. Choice of parameters

The calculation is performed using a single-particle Nilsson potential. The set of the
“A4 = 242” parameters [8] of the potential is used, i. e. x, = 0.0577, u, = 0.650 for pro-
tons and «, = 0.0635, u, = 0.325 for neutrons. The frequency of the spherical harmonic
oscillator is

° i3 N-Z
(th)p(n) = 41/A ! 1+ 7 MeV (23)
We do not take into account the matrix elements of the hexadecapole term (o2P,)

of the Hamiltonian between different shells when diagonalizing the Hamiltonian. The
strength of the pairing interaction is taken in the form [8]

N-Z

For solving the pairing equations we take into account 2V15Z or 215N levels nearest
to the Fermi level. The pairing strength G is assumed constant with the deformation.
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Fig. 1. The path L corresponding to the botiom of the potential energy valley of 24°Pu
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The calculations are performed for 2*°Pu. All the quantities presented in the next
section are calculated along the path (L) in the (e, &,)-plane (see Fig. 1). The path is
taken from Refs. [9, 10]. It corresponds to the bottom of the potential energy valley of
the nucleus. It goes through four points: first minimum (J), first saddle (A4), second mini-
mum (IT), and second saddle (B) of the potential energy surface of 24°Pu taken from
Ref. [9].

. A CHy . .

The matrix elements of the operators Q,, and “a between the single-particle
states from the same (N, N) shell and the shells differing by +2 (N, N+2) are taken into
account throughout the calculation.

Qio

The macroscopic calculations ot Q4 and its derivatives are performed assum-

i

ing the uniform density distribution inside a nucleus.

3. Results and discussion

To illustrate the changes of the mean value of the square radius of a nucleus (Qqq)
and the quadrupole moment (Q,,) with deformation, they are calculated as a function
of £ (note that for each value of ¢ an appropriate value of ¢, from the L path (Fig. 1) is

160

120

80

40

o R S R S B
0 02 04 06 08 1.0

Fig. 2. Dependence of the mean square radius (Qoe) and quadrupole moment (Q50) of 2*°Pu on deformation,
calculated in the microscopic way (solid line) and, also, macroscopically for uniform mass distribution
(dashed line)

takenj. The resuits are plotted in Fig. 2. The solid lines correspond to the microscopic
and the dashed ones to the macroscopic values. The change of Q,, is negligible for small
deformation (around the first minimum) but becomes more significant for larger deforma-
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tions. With the help of definitions (11) it can be shown that in the limit of the largest

0 0
quadrupole deformation the ratio of ~§—(£ to Q0
&

&

, both calculated for the uniform

mass distribution, satisfies the relation

2000 |0
fim (9900 °Q2°> ~0.5. (25)
e-1.5 de Oe

Fig. 3 shows that in the point corresponding to the second saddle (e = 0.87, g, = 0.12)
this ratio is equal to 0.39. These results indicate that the collective coordinate Qg4, in
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Fig. 3. The same as Fig. 2 for the derivatives ”og
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Fig. 4. Dependence of the proton energy gap ‘1 and 232 X232 (cf. Eqgs (14), (15) and (17)) on deformaion
for 23%Py
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addition to the coordinate Q,,, may play an important role for large deformations which
anO

appear in the fission process. The microscopic values of ~—=~ (solid lines in Fig. 3)

e
are close to the macroscopic ones {(dashed lines in Fig. 3); the structure of the microscop-

¢ .
ic curves A_Q,ﬂ’, is the shell effect.
£

-

Let us now investigate the influence of the @, and Q,, degrees of freedom on the
value of the inertial mass parameters By, o,, (16) and B,, (22). The values of Z3%, Z2% (cf.
Egs (14), (15) and (17)) and 4 are shown in Figs 4 and 5 for protons and neutrons, respec-
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Fig. 5 The same as in Fig. 4 for neutrons

tively. It is seen that the structures of these three curves are correlated. The quantities Z1°
and Z§2 grow with the deformation, not monotonically, however. Each decrease (or
increase) in X7? with respect to its mean behavior corresponds to the minimum (or maxi-
mum) in the 4 function. The single-particle structure is particularly visible for 23* and A.
The inertial mass parameter By, ,,, is presented in Fig. 6. It is calculated according to
formulae (16) and (21) in the three cases. Assuming:

— the mixing of quadrupole Q,,, monopole Q.o and hexadecapole Q4 vibration
(solid line), '

— the mixing of vibrations Q,, and Q,, (dotted-dashed line),

— quadrupole vibration only (dashed line)
it can be seen that the effect of the vibration Qg on By, .0, is much stronger than that
of the Q,o-type vibration for the deformation ¢ > 0.4. For a smaller deformation both
effects are comparable. Thus, it can be concluded that the coupling with the Qgo-type
vibrations may be important in the treatment of the quadrupole vibrations in the second
minimum. Of course, if one wishes to describe the multipole-multipole vibrations, one
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Fig. 6. Dependence of the quadrupole-quadrupole inertial mass parameter Bg,,0,, of 2*°Pu_on deformation

in the three cases: with coupling between monopole, quadrupole and hexadecapole vibrations taken into

account (solid line), with coupling between two last ones (dotted-dashed line), and with quadrupole vibrations
only (dashed line)
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Fig. 7. Dependence of the inertial mass parameter B, of 24°Pu on deformation. For details see text

has to put some kind of volume conservation condition on the vibrations. Then the mono-
pole variable Q,, will depend on the other multipolarity variables.

The effect of taking into account the collective coordinates Qq, Q20 and Q.o on B,,
is shown in Fig. 7. The thick solid line represents the inertial mass parameter B,, calculated
according to formula (2) (i.e. with the derivative of the Hamiltonian over deformation).
The dashed line presents B,, of Eq. (22), calculated with the Qq0, Q50 and Q,, degrees
of freedom taken into account. The quantities B,, and B,, are not distinguishable in the
plot. The dashed-dotted line represents B, calculated with only Q,, and Q,,. The thin
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solid line shows B,, when only Q,, is taken into account. The parameters B, are also
0
calculated using the macroscopic derivatives —%—2»0— and assuming the quadrupole vibration
€
only (dotted line in Fig. 7). B,, differs from B,, for Q,, only by about 4% in the first
minimum and by about 169/ in the second minimum. The coupling with the hexadecapole

i i 1 T | v [ ! ] ! i
1 -1
- %TBE,‘ & (MeV ') 1
1600
1200 -
800 -
L
400+
0 —
i 1 | 2 1 1 1 i i L 1
[ a2 0.4 [\T5 08 1.0
Fig. 8. Dependence of the inertial mass parameters Bg;, — B, and B, ., of **°Pu on deformation

vibration contributes only to about 1.7% of the last difference while the rest (14.3%)
of this difference is the effect of the coupling with the monopole vibration.

Finally, we present the results for all the three components of the mass tensor in the &,
&4 dynamical space, i.e., the parameters 8,,, B,,, and B,,,, (see Fig. 8). One can see that
the dependences of the three inertial mass parameters on deformation are similar. Here
again, the values B,,, B,,, and B,,,, are not practically distinguishable, in the plot, from

the values of B, B,,, and B, respectively.

5. Conclusions

The following conclusions may be drawn:

(/) The monopole moment {(Qy, = (r2>) treated as a collective variable influences
the values of the inertial mass parameter By, ,, corresponding to the quadrupole-quadru-
pole vibrations. This effect increases with the growth of the deformation and may be im-
portant for a dynamical calculation in the second minimum of the potential energy of
fissioning nucleus.

(#i) The inertial mass parameter B,, “extracted” from the mass parameter correspond-
ing to the multipole-muitipole vibration is equal to that obtained from the adiabatic
approximation for the dynamical variable e.
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(#1) The minima of the inertial mass parameters correspond to the minima of the
potential energy of the nucleus (cf. Ref. [3]).
(iv) Deformation affects the inertial mass parameters B,,, B

.. and — B, in a simi-
lar way; their minima and maxima are correlated.

The author would like to thank Dr A. Sobiczewski for helpful suggestions and
critical reading of the manuscript.
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