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The field equations of some self interacting systems with polynomial interaction La-
grangians possess particular solutions similar to solitary waves of classical field theories.
These particular solutions can be interpreted as analogues of the operators aZe“""‘ and
ake'”""(k x = kox°—k - x), where g, and ”I are annihilation and creation operators of
free field theories. A solitary wave propagator can be constructed using the superposition
principle of quantum theory rather than the mathematical superposition of solutions of
a differential equation. The propagator has poles at integral multiples of the mass of the
associated linear theory and has zeros which depend upon the coupling constants.

The study of self interacting field theories with polynomial interaction Lagrangians
has been undertaken previously from the point of view of contemporary perturbation
theory — that is — the self interaction is treated on the same basis as interactions among
different fields. The motivation for such studies has been either to renormalize interactions
among different fields or to model the more complex interacting field theories }1, 2].
However, the appearance of resonances in multi-meson and meson-baryon systems provides
direct experimental motivation for studying self interacting theories and makes the seif
interaction interesting in itself. This, in turn, implies the need for a re-examination of the
methods employed to describe the self interacting field theory — in particular — to allow
for persistent interactions. There is no longer any necessity for asking that the fields reduce
to free fields in the limit of large times and, in fact, it is not physically plausible that
they should.

Some clasical theories with self interactions have, in addition to the perturbation
(linearized) solutions, remarkable traveling wave solutions known variously as solitary
waves, solitons and conoidal waves [3]. The common property which these waves possess
is that they all have constant phase velocity. This is a surprising result in view of the fact
that the systems have both dispersion and nonlinearity present. Although it differs slightly
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from convention, all of these exicitations in nonlinear systems will be referred to throughout
this paper as solitary waves [4].

In addition to having constant phase velocity, the solitary wave solutions discussed
here satisfy the interacting field equations for all times. Consequently, they seem appro-
priate to describe the properties of persistent self interactions. Furthermore, the solitary
wave fields contain either positive or negative frequencies, but not both simultaneously
{for non-localized fields). Consequently, non-localized fields with the space independent
coefficients of e***(k - x = ko,x°—k - x) replaced by creation or annihilation operators
of the linear theory will also be solutions of the field equations.

The specific field theories considered here have field equations of the form

(08" +mHP+ag? ' +ig** ! =0, (p#£0, -1, —1), (D
where

8* =-V: (h=c=1), 2)
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m is the mass of the associated lincar field theory and o and A are coupling constants.
Forx =0,p = 1/20or 2 = 0, p = 1 this is the field equation of the 2¢* theory while for
a # 0, p = 1/21t is a spinless analogue of the massive Yang-Mills theory. Clearly, disper-
sion is provided by the m? term while the interaction terms furnish the nonlinearity. Nonethe-
less, solitary wave solutions of Eq. (1) exist. These are particular solutions having constant
phase velocity, The non-localized solutions separate into positive or negative frequency
solutions. Explicit forms for these solutions may be found either by the method of base
solutions [5] or by direct integration [6]. Since the latter method is more transparent it
will be used here.
In order to exhibit the solutions assume

% = &), 3
¥ = *tk-x 4
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where k is an arbitrary (constant) four vector. Eq. (1) becomes
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Muitiplication by dg/dy and integration gives
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where B is constant. Separation leads to the second integral
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As it stands this integral is rather complicated -— it defines hyperelliptic or automorphic
functions [7], depending on the values of B, m, k, «, A and p. However, for the special case
B = 0 simplifications are immediate and several types of solutions can be found in terms
of elementary functions. For this case the integral is

, dg m? ag?? igtr \T1?
r+r = f—(— e T o) ©®
@ I (p+ Dk (2p+ Dk
Let
p = ¢, (10)
1 d 10
22 (i1)
2p oy @
SO
dy m? ay Ap? T2
2pix+x) = | —{ — - - . 12
Ptx) j » ( KT (piDRE T Cpr i (12)

This integral is elementary. There are several interesting special cases.
Case 1. « < 0 and k2 < 0 (k spacelike)

1

_ « a A s \/77 IRYIEEZ
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(13)

This type of solution is a soliton — it clearly describes a system localized in space-time,
propagating with constant phase velocity ko/|k|. It has the interesting property that it is
singular at o = A = 0 [8, 9]. For 2p = 1, o = 0 this function reduces, at the origin, to 21/2
times the solution given by Goldstone [10].

Case 2. « < 0, k* < 0. Similar to case 1, but with the constant of integration chosen
differently. The solution is

1
o éanpmxllk[ o 2 y e—2pmx/]k] ~ 37
¢ =1 2 + + 30 2 ’ (14)
2Ap+1m 2 2(p+1)m (2p+Dm 26

& arbitrary. This solution is regular for vanishing coupling constant, but it has the inter-
esting property that it is asymmetric in x.

Although these solutions have not been quantized, they are included as interesting
examples of the combined effects of nonlinearity and dispersion. They are particular
solutions and, in the absence of physical interpretation, may be viewed as curiosities.
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Finally, the case of immediate interest for quantization has k? = m?.

solutions are, for a system of volume ¥(6),

Particular

1

¢(i): 1= — - ,,wi, L AP 2ipk x ZH 7'_”{4_[‘;):{_", ek x v
ok Yp+m* (V) 42p+ Hm*(Vw)*”

A[((i)e¢ik-x (15)

vV Vo,

where w,=(k*+m?)". One objection which comes to mind immediately is that these are
complex or non-hermitian solutions. However, it is only the general solution of the
field equation which must be real or hermitian. Particular solutions, e.g., ae”** for the
Klein-Gordon equation, are acceptable.

For a = 4 = 0 these solutions reduce to particular solutions of the Klein-Gordon
equation. It is evident that they contain either positive or negative frequency terms sepa-
rately. This suggests the identification of A’ with the annihilation or creation operators
of the linear theory. The condition that the classical solutions be nonsingular is similar

IAR 8oV # 1 (16)

to appropriate for the A¢* theory.

A second important characteristic of these solutions is that they contain the coupling
constants for all times. Thus, they satisfy the interacting field equations for all times,
rather than reducing to solutions of the Klein-Gordon equation for large times. This is
the property which we intuitively expect for self interacting systems.

Finally, the classical solutions are not localized. This is also consistent with the analogy
to the solutions ge™** of the Klein-Gordon equation.

Turning to specific matters in the quantization of these solutions, take the commutator
of the annihilation and creation operators to be

(ALY, 4] = 6y (17)
where, in the box

2n
k= I (n e +n,e,+nge3) elc. (18)

With these commutation relations the norm of ¢'72j0) is

0[¢ Mg 0y = (Vo) ' wo C2P(&)C2(8) [(Vo ) Pr' [(Vo) P

x <OI (A;‘+))2pn+l(A;—))2ps+ 1§O>e—i(2pn+l)k-x+i(2ps+l)q-x’ (19)
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where
& = aj(dm?r(p+1)), (20
ro= [o?/(16m*(p+ 1)*)— Ajdm*Q2p+ ]2 (21)
and C, is a Gegenbauer polynomial [7]. With the commutator given above

UATZPTIATART0) = 5,0, ., (2pr+ 1)1, (22)

This expression is only valid for 2p an integer, although a generalization can probably
be found. However, restricting the discussion to this case, the norm of ¢~,0) is

1

Qg0 = @) T Cont DICHOTIV@) ™ @Y

independent of x. Thus, the state created by ¢ is non-localized, once more in keeping
with the analogy to the operator a'e’™* of the linear theory.

With the particular solutions of the interacting field equations in hand and with
some understanding of the physical interpretation of the states created by these operators
we must next inquire about their further use. One of the central elements of the linear
theory is the propagator. How can the solutions of the nonlinear theory, since they are
only particular solutions, be used to calculate a propagator 7 In the lincar theory the usual
procedure is to construct the general solution of the field equation by a superposition
of the particular solutions. Explicit us¢ is made of the mathematical principle of super-
position ot solutions of a linear differential equation to obtain the general solution. However,
this principle is worthless for solutions of a nonlinear differential equation — the super-
positions are no longer solutions of the nonlinear differential equation. Consequently,
it is necessary to re-examine the construction of the propagator for the linear theory to
see if physics can direct us to the construction of a propagator without employing the
general solution of the differential equation.

The propagator for the linear theory can be constructed in the following way. The
operator aje’™™ is a creation operator: it creates a particle with four momentum k at
a space-time point x. The norm of the state afe™™ [0) is clearly independent of x, in
keeping with the uncertainty principle. If '¢) is an arbitrary ket, the conditional amplitude
for a particle to be created at x with momentum k and be found in [&) is {g|p{(x)[0),
where y; (x) = afe’™ ™/ Jo,V. Similarly, the conditional amplitude for a particle of
momentum q to be annihilated from |¢&) at position y is (Olwfl+)(y)|a>. Hence, the conditional
amplitude for the sequence is the product of amplitudes, e.g.,

Poyg(x, ¥) = Ol (3) &) Lelyi (%) 10). (24)

The time re¢versed sequence for negative energy particles is completely indistinguishable
from the direct process so we must take the arithmetic average of the two amplitudes.



622

If the intermediate momenta k and g are not observed and the states ‘&> are not observed,
we sum on k, g and e. Finally, if the states le) are closed -the total propagator is

P, y) = 3 Y (040 6 < ph (%) 0500 — o)

tk.q,
+ <090 [y Cetwh V() 1050(x0 = yo)}- (25)

Making specific use of the form for i*’ and the commutation relations this is

Pix—y) =4 E QeI yHik X fﬂfto()‘o —Xc) peiarxtikey “'I“Z%Q—y") 10>
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Thus, the propagator can be constructed without using the general solution of the field
equation but, instead, using the quantum theoretical rules for the superposition of condi-
tional probability amplitudes. The mathematical step of construction of general solutions
by superposition of particular solutions is unnecessary. For the linear theory the propagator
is the total propagator since the momentum states form a complete set.

To construct a propagator in the nonlinear theory we proceed in the same way,
using the creation and annihilation operators ¢!’ and ¢%,’. However, there are some
important restrictions which must be recognized and this propagator will be referred
to as the solitary wave propagator. First, there is no a priori reason to interpret the system
described by ¢} as a single particle and k need be the momentum of the system. Second,
there are other states through which the process may proceed. These states will be created
by other solutions of the field equations. With these qualifications in mind the solitary
wave propagator is

Pix, y) =} AZ 0l (B ()00 — o) + B ()B5g (1)0(xo = ¥0) 10>. (27)

As in calculating the norm of ¢—:05, we make use of the expansion of the operators and
the commutation relations to obtain

1
PYx—y) =1 3 (o)~ ’[C? (¢ )]2[(Vwk) “Pr]P(2pn +1)!
nk

x {e—i(Z_:m+ l)k-(y—x)g(yo__xo)_}_e—'i(ani- 1)k (x-—y)o(xo-yo)}’ (28)

This expression can be put in a more transparent form by using the representation for the
step function

o+2) = + - [
=T T oni  h+ie

e"“ . (a > 0). 29)
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The n-th term of the series is

2
P, = Jl”l ¥ @-{i]) [ 2”] [(Vey)~"r]"

2niw, V

1
g {/ —exp {—i(2pn+ 1) [(h— @) (v xo) +k - (y— )]}
1—1&

P exp {—iQ2pn+1) [(h+wy) (yo—xo)—k (y—x)]}}. (30)
Replacing the sum of k by an integral (strictly speaking, this requires having ¥V — oo,
which also requires a re-definition of the coupling constants; however, it is useful to leave
the V' dependence explicit) one has
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In the first term, let i—w, = k; and in the second h+w, = k, to get
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Finally, let (2pn+ Dk = k' to obtain (drop primes)
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T @)ty " K+ Qpn+ 12 m*)P" k2 —Q2pn+1)2m® +ie
ir*(2pn+1)1(2pn+1)*" 72
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- V2 [(2pn+1)*m?: -V
The solitary wave propagator is then

o
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The factor Vw, is an invariant so the solitary wave propagator is invariant. Thus, the
amplitude for propagation from x to y through the solitary wave state is Lorentz invariant.

From the presence of the term A4 {y—z) it is evident that the series has singularities
on the light cone similar to the linear theory (n = 0). The operator [(2pn+1)*m*—V2}~#"
modifies these singularities and for some n the expressions on the light cone become
finite. At points off the light cone the series itself is divergent due to the factor (2pn+1)!
This term arises from the functional dependence of the solutions on the creation and
annihilation operators. It is straightforward to show that this divergent series is asymptotic
(see references [11] ans [12] for the A¢* theory). Finally, it is easy to see that the solitary
wave propagator does not satisfy the field equation.

In momentum space the solitary wave propagator (the coefficient of e *©~ in
Eq. (33)) is

&L
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From inspection we see that this series has poles at |k| = (2prn+ 1)m, so we expect that
the fields ¢f,f) describe many-particle systems with masses of the particles equal to integer
multiples (2pn+1) of the mass of the particle of the linear theory. This is something of
a surprise — the masses of the particles in the interacting theory are independent of the
coupling constant. Furthermore, since the value of the n-th term approaches —oo at
Qpr.+1)m—¢ = k| and +o0 at (2pn+1)m+¢ the series must have an infinite number
of zeroes. These are dependent on the coupling constant and for the ig* theory the first
one occurs approximately at

k] & m{L+2/(1+3122/128m*)). (36)

This behavior leads to oscillating cross-sections for baryon-antibaryon scattering [13].
In momentum space the series is also asymptotic, the n-th term vanishing for large k|,
while for fixed |k!| and increasing » the terms diverge.

Finally, if we apply the theory to neutral, pseudoscalar mesons, evaluating p by
taking m = m,. = 135 MeV and m = m,. for n = 1, the theory predicts a sequence
of neutral, pseudoscalar mesons at m, = (3n+1)135 ~ 945, 1350.... The propability of
occurrence of the higher mass states, proportional to the residue of the propagator,
depends upon the coupling constants through the Gegenbauer polynomials and the factor r.

In conclusion, the nonlinear field theories described in this paper possess solitary wave
solutions which can be interpreted as analogues of the creation and annihilation operators
ale™™ and a,e” ™ of the linear theory obtained by setting the coupling constants to zero.
The propagator of the linear theory can be constructed independent of the mathematical
principle of superposition of solutions of a differential equation by use of the quantum
superposition principle for conditional probability amplitudes. The resulting theory
describes persistent self interactions since the fields contain the coupling constants for
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all times and always satisfy interacting field equations. The theory is a many-particle
theory with a spectrum of masses independent of the coupling constants and equal to
(2pn+ 1)m, where m is the mass of the associated linear theory.
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