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In this paper we reexamine the problem of the decay law of unstable quantum systems.
We show that purely exponential decay law should be measured in experiments in which
it is known that a system stays in its initial state until it disintegrates. Here we call such ex-
periments — first kind experiments. The second kind of experiments consist of those in
which a system may undergo quantum transitions to other states before decay. Deviations
from the exponential decay can be seen, in principle, in these experiments, Decay laws sui-
table for both kinds of experiments are explicitly derived. A review of the various ap-
proaches to the decay law problem is presented in the Introduction.

1. Introduction

When describing the decay phenomena of unstable quantum systems it is often erro-
neously assumed that the function

2

P(t, v) = (1)

{yl exp <— —;—f H) lp>

gives the probability of a system surviving in the initial state |¢)> up to the time 7, [1],
(see also [5]). Hence this function is compared with a fraction of the undecayed unstable
particles measured in the bubblc chamber or other experiments in which one knows that
a system is occupying the same initial statc until its desintegration occurs. Results of this
comparison are rather pitiful since the number N(¢) of undecayed particles measured in
bubble chamber experiments drops off exponentially

N(ty = NQ) exp (—1I), )

while the function P(¢, y) has a different time behaviour, as was shown explicitly in the
solvable examples [2-4] and also generally under some assumptions [5]. This discrepancy
is usually interpreted in favor of the function P(¢, y) saying that deviations from the
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exponential decay law should certainly be measured in such experiments for greater times
[5, 6). However, according to Quantum Mechanics, this function gives the probability
of finding a system at the time ¢ back again in the initial state, without any condition
concerning its behaviour at intermediate times. Hence, this function should be compared
with the results of measurements in which one does not observe a system. Therefore, we
shall stress that in analysis of experiments with unstable systems one has to distinguish
between two different kinds of experiments of this type. The first kind there are
those experiments in which one is observing a system constantly and the second kind
those in which a system is not observed during a time ¢. In some of experiments (first
kind) with unstable particles one knows that a particle prepared at ¢ = O stays in its
initial quantum state until it decays. This information should be taken into account if
one wants to derive a decay law reproducing correctly the data from such experiments.
The first attempt toward this goal was undertaken by Coester {7] who expressed the view
according to which the exponential decay law is due to the fact that the system in “under
continuous observation”. Later Ekstein and Siegert [8] remarked that each bubble of
a track produced by a particle in the bubble chamber or in the photographic emulsion
should be treated as an experiment showing whether a particle is decayed or not. Thus
repeated reductions of the wave function at random instants occur exactly in the same
manner as in Heisenberg’s theory of tracks produced by the Wilson camera [9]. This leads
to a function for the decay law which is different from P(z, v) and, according to the authors,
should be asymptotically exponential. Fonda, Ghirardi, Rimini and Weber have further
developed this idea and derived the almost exponential decay law [10]

N(t) = aexp [—v(E+T)]1+B(t) exp [~ A(t+T)] 3

with [B(r)| bounded by a constant. Here T stands for the time of flight of particles from
their source to the bubble chamber and 4 stands for the frequency of random measurements
suffered by each decaying particle. The second term is argued to be small in comparison
with the first one since AT is big in practice. The decay parameter v is then determined
implicitly by the relation

Y3 }) diP(t, p) exp [(v=2)1] = 1. @
0

This relation suggests a rather strange dependence of the decay parameter v of a particle
on A which is connected with the details of the experimental set-up used in measurement [11].

The theory was further refined and generalized by Yoshihuku [12] who pointed out
the difficulties in description of a neutral particle decay caused by the lack of track when
the particle is undecayed. He introduced the two frequencies A, 4, of random measurements
performed on a system before and after its decay in order to introduce the neutral particle
decay into the scheme and arrived at the following purely exponential decay law in the
limit of the constant observation of the system (4,, 4, — o)

N(r) = N(0) exp [P'(0, y)t]. %)
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Note, however, that for a selfadjoint Hamiitonian H the last exponent is simply equal
to one and the decay is absent at all (Turing’s paradox!).

We shall present here a simple derivation of the decay law of a system which stays
in its initially prepared state until it decays (first kind experiment). The paper is an extension
and refinement of our first attempt at the problem described in the preprint [13].

2. Derivation of the exponential decay law — first kind experiment

We will now consider a stationary time evolution of an unstable quantum system.
Instability of a system means that the Hamiltonian which governs this evolution is not
Hermitean

ih
H=M- 5 r. (6)

Here M and I' are Hermitean operators. The matrix elements of the evolution operator

a(t) = exp (— —;; H). (N

satisfy the Schrodinger equation
ihda(t) = Ha(r) 8)
and the initial condition
a(0) = 1. ®)

They may be converted into an equivalent Feller’s type integral equation
H
it i i
a(l) = exp <— n Hd> 3 st exp [—— " (t——s)Hd:l H sca(s) (10)
3

1

as it may be verified simply by differentiation with respect to the time [14]. Here H, is the
diagonal part of the Hamiltonian H specified for the given state [y> and H, is its off-diago-
nal part
Hy = |y CylHly) (vl an
Hye = H—H,. (12)
Hence we may writc for the diagonal element of the evolution operator

i

o (= ) nd = exo (= 5 coitin))

_ ’LZ J dsCylHly.> (.l exp (~ » H) ) exp (— =9 <wIHiw>)
1 ' '
a¥ti O

= f(t, p) exp (- % <le[¢>> , (13)
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where the function f(r, y) has an expansion
1 2
it p) =1+ Z <ylH]y> {y.lHlyd <l—h)
a¥l
iht

it o
exp— - KypH|w) =<y, [Hip,») -1
(ih)*+ S+ (14)

((WIHW>—<'MH}1P4>)2 <W11H1Wa>_<wu”w>

where the summation runs over the vectors ly,> forming together with |p) = ly;)> an
orthogonal base in the Hilbert space of our system. Each element of the right-hand-side
of this equation corresponds to a different way of passing from the initial state ') at
t = 0 to the same state at time ¢ (different Feynman paths). The first one

alt, ¥) = exp (— 2 <w!HEw>> (15)

gives the probability amplitude of preserving the initial state ) up to the time 7 and
so it is appropriate for the first kind experiment. Such an interpretation follows from
a definition of the Hamiltonian and Markovian character of the time evolution of a quan-
tum system.

Indeed one has for a small time interval

Wla(d) |9 = 8= = CpulHip YAt +o(40). (16)

It is clear from this formula that the diagonal elements of the energy matrix describe
the tendency of a system to preserve its state while the oflf diagonal clements describe the
tendency for changing a state. Thus for an infinitesimal time interval the diagonal elements
of the evolution matrix give the probability amplitudes for finding a system in the same
initial state without changing the state at intermediate timcs. It is not true for a finite time
interval but in that case one may utilize the Markovian character of the evolution in order
to include this additional condition. We split the time interval into pieces and pass from
the state |y) to the same one at r = 0 step by step using formula (16). We will obtain for
the conditional probability amplitude a(t, y) of this kind of process the formula

a(t, ) = lim [1— — CplHipd - +o (-’—)] - exp(— = <wIHW>> (7)
A h n n h
which agrees with (15). One sces from Eqs (13) and (14) that this function differs
from the diagonal clement of the evolution matrix unless the sum of the other elements
vanishes. This would be the case however if the passages to the state > would be forbidden,
ie., if the matrix elements {y!H{y,> would vanish for « # I.
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For the decay law of a system prepared at the initial time ¢t = 0 in the state |p)> we
obtain now from formula (17)

la(t, p)|* = exp (—1T,), (18)

where
r, = {yllyy = =P, y). (19)

Clearly if I' would be a positive number then all states would decay at the same univer-
sal rate which might not be the case in general.
We shall remark that Ekstein and Siegert consider the formula similar in spirit to

t
our formula (17) but the time interval — is kept final there and physical arguments are
n

given against passing to the limit n — oo (see. [8], formula (4)). We did not find these
" arguments convincing since the information which we have about the system in the experi-
ments under consideration amount physically to its constant observation. Hence the
limit » — oo is legitimate and yields the exponential decay law.

3. Concluding remarks

We have shown that if an unstable quantum system stays all the time in its initial
state until it decays (first kind experiment), then the exponential decay law is to be expected.

The question then arises of how to decide in practice whether a system preserves
its initially prepared state or not. One may refer to the bubbie chamber or other experiments
where it may be approximately checked by observing tracks of charged particles. For
neutral particles, like e.g. K®-ons, there may be an experimental situation when any change
of state, caused, e.g., by the weak interactions, is immediately detected. Thus, in such
a case we can also assume that the particle was occupying an initial state until its decay.
The theory applies to both these cases.

The question of constructing the Hamiitonian for unstable systems remains untouched
here. We shall mention only the Weisskopf-Wigner approximate method [16] and also
the Krolikowski~Rzewuski rigorous method for deriving the equation of motion for
projection of the state vector onto a subspace of the Hilbert space of states [17]. It turns
out that this equation contains a ““potential” which is not Hermitean and describes passages
between the given subspace, which may be identified with the set of decaying states, and
its orthogonal complement which is the space of states of the decay products. Results
concerning this type of approach to the decay problem may be found in the literature
[18-25].

Concluding, the purely exponential decay law results from the nonhermicity of the
Hamiltonian and from the assumption that the initially prepared state of a system is
preserved in time up to the moment of decay. Deviations from the exponential decay
law could be seen only in experiments in which the condition of constant observation of
a system is violated (e.g. second kind experiments).
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In this case the regeneration effect, represented by higher terms in Eq. (13),
may spoil the pure exponential time behaviour of the number N(r) of “undecayed systems”.
We add the quotation marks since this number now includes e.g. systems also recombined
from products of their decay. For the decay law in this case one obtains the function which
according to formula (14), may be written in the form

P(t, y) = If(t, v)i* exp (—1T ), (20)

where the function f{#, v) measures the deviations from the exponential decay law.
We shall discuss the question of nonhermicity of a Hamiltonian in connection with
the regeneration problem in a subsequent publication.

The author wishes to thank Professors J. Rzewuski, J. T. Lopuszanski and J. Lukierski
for many stimulating conversations, remarks and suggestions. Special thanks are extended
to Professor J. T. Lopuszanski who pointed out an error in the preprint.
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