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INFLUENCE OF THE QUADRUPOLE-PAIRING FORCES ON THE
NUCLEAR INERTIAL MASS PARAMETER
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The inertial mass parameter B for the collective quadrupole oscillations is calculated
in the adiabatic approximation. It is assumed that the short range residual forces are of the
monopole-plus-quadrupole-pairing type. The dependence of the mass parameter on the
strength of the quadrupole-pairing interactions, G, is investigated in the purc harmonic
oscillator model.

1. Introduction

Theoretical description of the collective phenomena in nuclear physics, such as the
collective vibrations or nuclear fission, requires knowledge of the mass parameter B. This
quantity represents the inertia of the whole system with respect to the given type of motion.
The standard calculations of this parameter in connection with the spontaneous fission
investigations ([1], [2]) included the monopole-pairing residual forces which couple two
particles to the total angular momentum J = 0. It was found that the mass parameter
depends very strongly on the pairing energy gap resulting from those interactions (e.g.
[1]-[3D. On the other hand, inclusion of the higher multipole-pairing [4] modifies the
pairing gap and influences other physical quantities characterising the nucleus (see Refs
[S}10]), in particular the inertial mass parameter {3], [11].

The aim of this paper is to discuss the influence of the quadrupole-pairing forces,
acting between two particles coupled to the total angular momentum J = 2, on the
inertial mass parameter. Numerical calculations are performed within the pure anisotropic
harmonic- osciliator model. This model offers considerable computational facilities and
allows some insight into the possible correlations between the changes in the mass param-
eter and the underlying single-particle structure of the nucleus.
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2. Derivation of the mass parameter in the adiabatic approximation

The inertial mass parameter B is extracted from the expression for the energy of
the given collective motion, hw. In the following the adiabaticity of this motion is assumed,
i.e. the quantity hw is taken to be small, in particular when compared with the single-
-particle energies.

The Hamiltonian consists of the single-particle part and of the two-body interaction.
The latter is separated into the long-range multipole-multipole part (in this case expressed
as the quadrupole-quadrupole forces) and the short-range part, approximated by the
multipole-pairing interactions, which contains in addition to the standard monopole-
-pairing — the quadrupole-pairing term.

The Bogoliubov-Valatin transformation to the quasi-particle creation and annihilation
operators «f, «, is performed and the Hamiltonian is assumed in the following form:
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In this approach the pairing energy gap becomes state dependent:

4, = Ag+qud,. )



641

The Fermi energy A and the gap parameters 4,, 4, are found from the BCS equations
for the system of A particles:

Go 1 ik
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Furthermore it is assumed that the n-th collective state of the system is described
by the phonon creation operator:

rt= :21 af Tl + ; by (11)
so that
[H, 1] = ho,T}. (12
Moreover
[Ty Ih] = Oum
so that

;[(ai'z")z—(bi'i’)z] = 1. (13)

The collective energy of the quadrupole oscillations, hw, may be expressed in terms
of the relevant stiffness and mass parameters, C and B respectively, as:

ho = (C/B)'2.
Similarly one has for the reduced probability of the electromagnetic E2 transition:
B(E2) = 2VB-O)7\.

In the following the Random Phase Approximation (RPA) is applied to derive both
the above mentioned quantities; those in turn are used to obtain final expression for the
mass parameter B.

In the RPA method one derives from Eqgs (11)~ (13) the so called dispersion relation
for hw which describes the collective energy dependence on the quadrupole force strength .

In the case of pure quadrupole-quadrupole oscillations this relation is simply a single
non-linear in hw equation. In the present case three different modes of excitation are
mixed, namely the pairing vibrations of the monopole-pairing and quadrupole-pairing
type are added to the quadrupole oscillations — see Eq. (1). The RPA equations obtained
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in this situation lead to the dispersion relation in the form of a 5x 5 matrix determinant.
When proton-neutron coupling is allowed (see [10]) one eads up with a 10 x 10 determinant.

The calculations presented here are made for the interaction between one kind
of particle only, i.e. for the 5x 5 case.

Because of the assumed adiabaticity of the collective motion one can expand the
dispersion relation in powers of hw retaining the lowest terms: constant and those pro-
portional to (Aw)®. This gives an approximate formula for the collective excitation energy.
The B(E2) probability is found from Eqgs (12) and (13) when similar expansion is performed.

The inertial mass parameter emerging from this approximation can be schematically
written as:

_ amamy) ”
T 22,402 )7
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and the complicated corrections of both sums reduce in the case of pure monopole-pairing
forces (i.e. G, = 0) to the well-known formulae derived by Beés [12] in 1961.

3. Details of the calculation
The numerical calculations were performed in the pure anisotropic harmonic oscillator
model:

M .
Voo, = [0} (x*+y*) +w?z?] (15)

with the deformation described by the Nilsson parameter &:

0, = wye) (1+} o),

0, = 0y(e) (1-%¢) (16)
and wq(e) for each values of deformation is determined from the nuclear volume conser-
vation condition.

The mass parameter B, describing the collective motion of the nucleus in the e-para-
metrization is related to B, given by (14) in the following way:

d 2
B, = B, (d—f) : (17)

where Q is the macroscopic mass quadrupole moment of the ¢-deformed system. This
additional factor depends only on the values of the deformation and that of the particle
number A.
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In the following only the systems of one kind of particles are considered. The particle
number 4 corresponds to the last spherical harmonic oscillator shell N = 6 filled in the
ratio x = 1/4, 1/2 and 3/4 (4 = 126, 140 and 154 respectively).

The BCS equations (10) were solved for 215 - 4 levels. For pure monopole-pairing
interaction the constant G, was taken to be equal G§’ = 15.36 MeV/4. The problem
of the normalization of the generalized pairing strength with G, # 0 was worked out
on the assumption that the lowest quasi-particle energy (E,)mi. has fixed yalue for any
combination of G, and G,. As the change of the Fermi level 4 with G is very small, this
energy depends mainly on the 4, changes. Single-particle energy gap (Eq. (9)) consists
ot two parts; one of them — 4, — is very sensitive to the quadrupole-pairing strength
and increases very fast from zero upwards with increasing G,. The other one, 4,, depends
mainly on G,. It means that in order to keep (£, constant for G, = 0 and for various
G, # 0 one has to change the monopole-pairing strength G, from G$* to some Go(G,)
value.

The specific change of G, for a given G, value is different for varying particle number
value. It is evidently connected with the single-particle structure of the energy levels which
are the closest to the Fermi surface. In particular Go(G,) should increase with increasing G,
if the lowest level has g, < 0 and decrease if g, > 0.

Numerical calculations were performed for two deformation points: ¢ = 0.1 and
¢ = 0.2. In this paper we are not concerned with the deformation dependence of the
investigated effects, so that the problem of re-defining the quadrupole moments entering
the definition of the quadrupole-pairing interaction (see Refs [9]-[11]) is not an impor-
tant one.

4. Results and discussion

First we shall investigate a simplified problem with no dynamic corrections arising
from the monopole-pairing forces. At the same time the static influence of those forces
is retained; it is reflected in the assumption of superconductivity of the investigated
system. It means putting G, = O everywhere but in the BCS equations (10) defining the
energy gap and Fermi level. Many terms in the described before RPA approach vanish
and this allows one to rewrite the formula (14) for the mass parameter in the following way:

_ 2% +4B(G,) (18)
¢ ey ’
the quantities Z; given, as before, by (14a).

The explicit dependence on the quadrupole-pairing force strength, (,, is contained
only in the part here referred to as AB(G,). If a similar assumption as the one described
above for the monopole-pairing forces is made for G, (G, = 0 in the basic equation (1) but
not in (10)), the second term on the right-hand side of Eq. (18) disappears. In this case
the quadrupole-pairing interactions can still change the mass parameter through the
modifications of the BCS equations and — in consequence — those of the energy gap.
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The first term on the right-hand side of (18) is influenced by G, only through the
G,-dependence of the single-particle energy gaps 4, (Eq. (9)). It is known from the previous
calculations {e.g. [1}-[3]) that the quantity of this type is very sensitive to the energy gap:
even a small decrease in 4 results in a relatively big increase in B = 2X,/(2Z,)2.

In the present case the energy gap parameter depends on the single-particle state
(Eq. (9)). Because of the energy denominators, the significant contributions to the relevant
sums in B come from the levels lying in the vicinity of the Fermi surface 4. In that way
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Fig. 1. Single-particle energy levels in fiwg(e) in the deformed harmonic oscillator model for £ = 0.1 and

& = 0.2, The positions of the Fermi level A(4) for different values of the particle number A4 are shown as

dashed lines. For each level the values of its degeneracy ¢ = (N—n,+1) and single-particle quadrupole
moment g,y are given

one can expect that for increasing G, values the term B will decrease if the 4, values
around the Fermi level become bigger. As the dynamic correction 4B(G,) is an increasing
and monotonic function of G,, one can predict the overall influence of the quadrupole-
-pairing forces on the mass parameter by analysing the properties of the single-particle
states in the close neighborhood of the Fermi surface.

Fig. 1 shows the level sequence in the relevant energy region for the deformations
¢ = 0.1 and ¢ = 0.2. For each level ¢, the value of the single-particle quadrupole moment,
q,,, is given together with the level degeneracy o = (N—un,+1). The positions of the
Fermi surfaces A(A4) for different particle numbers 4 are indicated by dashed lines.
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For ¢ = 0.1 in the neighborhood of the Fermi surface A and for 4 = 154 the single-
-particle levels have negative values of g¢,,; for 4 = 140 — small positive ¢,, and for
A = 126 — positive values of g,,.

For e = 0.2 one observes the appearance of the single-particle levels with big positive
q,, values near the Fermi surfaces for 4 = 140 and 154. Therefore one should expect
in those two cases a drastic decrease in the B values, connected with significantly larger
values of 4, for those particular states when G, changes from zero upwards. On the other
hand in the remaining cases where B should not change very much with G,, one expects
that the total B = B+4B(G,) will be more affected by the 4B(G,) dependence on G,.
In the first two cases (4 = 140, 154 for ¢ = 0.2) the increase of 4B is partially cancelled
by the decrease of B so that the net result should show weaker dependence on the quadru-
pole-pairing force strength, G,.

It should be mentioned that the previously predicted changes of Go(G,) for different G,
and particle number values arc qualitatively reproduced. For example, one expects that
at e = 0.1 Go(G,) for 4 = 154 should increase (g,, = —5.7) and for 4 = 126 — decrease

(g = +6.7) with G,. The calculation yields (G, = 0, Go(G,) = 15.36 MeV/A4 for both
A = 126 and 154):

G, = 31075 MeV/fm*; Go(G,) = 14.72 MeV/A4 for A = 126 and 15.48 for A4
G, = 6 -10-5 MeV/fm*; Go(G,) = 14.19 MeV/A4 for A = 126 and 15.71 for A4
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Fig. 2. Inertial mass parameter B;[#2/MeV] as a function of quadrupole-pairing force strength G,[MeV/fm?*],

calculated without dynamic contributions from the monopole-pairing forces. The full lines correspond to

the formula (18) and the dashed ones give B (see text). Left-hand side is for & = 0.1, right-hand side corre-
sponds to ¢ = 0,2. In cach case the value of the particle number A4 is given
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It turns out that the computed values of the mass parameter B, agree very nicely
with the above mentioned predictions. Fig. 2 shows the B, values in #2/MeV for different
G,, calculated with (solid line) and without (dashed line) dynamic correction 4B(G,).
The left-hand side corresponds to the deformation ¢ = 0.1 and the right-hand side —
to ¢ = 0.2. In each case the type of changes of the mass parameter is such as previously
anticipated.

Unfortunately no such simple analysis is possible when taking into account both
terms in the pairing forces. The resulting formula (14) is very complicated and involves
many terms with different dependence on the quadrupole-pairing force constant G,.

2 2
By 4 LA /Mev] 8, j LA /MeV]
9
)
70
60
50
L 40
3ot
I €02 ol
ok -
10* -G, 0%-6,
1 1 1. L 1. i 1, 1 L 1 1 1 1 A,
0 2 4 6 hev/im® o 2 4 IMeV/Emé

Fig. 3. Inertial mass parameter B,[#%/MeV] as a function of G,[MeV/fm*], calculated with full contri-
bution from monopole- and quadrupole-pairing forces. In each case the particle number 4 and the defor-
mation ¢ are specified
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Fig. 4. Correction 0B,(G,) = B.(Go(G2), Gz)—BE(Gf,"’, G; = 0) to the mass parameter arising from the
coupling of the quadrupole-pairing forces to other modes of cxcitation, calculated for different values
of the G, constant

The numerical results obtained for the mass parameter as a function of G, are given
in Fig. 3 for two particle number values: 4 = 126 and 4 = 154. As before, for each
value of G, the monopole-pairing strength G, was chosen so as to reproduce the lowest
quasi-particle energy obtained with pure monopole-pairing forces.

Fig. 4 shows the correction 8B = B,(Go(G,), G;)—B,(GS"), G, = 0), arising from
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the coupling between the quadrupole-pairing and other modes of excitation. It is easily
seen that these changes of B, are different for different systemss. One may safely assume
that those differences arise from the properties of the single-particle levels in the neigh-
borhood of the Fermi surface. The inclusion of the quadrupole-pairing interactions may
lead to smaller or larger values of B, as compared with the pure monopole-pairing case.
The changes in both directions are too big to be neglected.

All this is in a qualitative agreement with the findings in Ref. [11] in the region of
small deformations. In that paper a slightly different approach was used to obtain the
mass parameter formula. The single-particle potential and the particle number of the
investigated system were also different but those authors concluded, too, that the quadru-
pole-pairing forces may change the mass parameter B very significantly.

5. Conclusions

It was shown in a simple harmonic oscillator model that the modified short-range
forces can lead to drastic changes of the microscopic inertial mass parameter values.
Therefore, if for some reason the importance of the quadrupole-pairing interaction is
established (see, however, Ref. [13]), it will be necessary to include their coupling with
other modes of excitation when calclilating mass parameters.

The magnitude of the corrections thus introduced depends decisively on the strength
of the quadrupole-pairing force as well as on the details of the single-particle level scheme
around the Fermi surface (i.e. on the particle number and the deformation of the system).
One has to keep in mind that those corrections may change the final result by a factor
of two or even more when comparcd with the standard solution with monopole-pairing
forces only.

The author is indebted to Professor Z. Szymanski for suggesting the problem and
for valuable discussions.
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